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Abstract
We explore the range of probabilistic behaviours that can be engineered with Chemical Reaction Networks (CRNs). We

give methods to ‘‘program’’ CRNs so that their steady state is chosen from some desired target distribution that has finite

support in Nm, with m� 1. Moreover, any distribution with countable infinite support can be approximated with arbitrarily

small error under the L1 norm. We also give optimized schemes for special distributions, including the uniform distribution.

Finally, we formulate a calculus to compute on distributions that is complete for finite support distributions, and can be

compiled to a restricted class of CRNs that at steady state realize those distributions.

Keywords Stochastic chemical reaction networks � Discrete distributions � Quantitative reasoning

1 Introduction

Individual cells and viruses operate in a noisy environment

and molecular interactions are inherently stochastic. How

cells can tolerate and take advantage of noise (stochastic

fluctuations) is a question of primary importance. It has

been shown that noise has a functional role in cells (Eldar

and Elowitz 2010); indeed, some critical functions depend

on the stochastic fluctuations of molecular populations and

would be impossible in a deterministic setting. For

instance, noise is fundamental for probabilistic differenti-

ation of strategies in organisms, and is a key factor for

evolution and adaptation (Arkin et al. 1998). In Escher-

ichia coli, randomly and independently of external inputs, a

small sub-population of cells enters a non-growing state in

which they can elude the action of antibiotics that can only

kill actively growing bacterial cells. Thus, when a popu-

lation of E. coli cells is treated with antibiotics, the per-

sisted cells survive by virtue of their quiescence before

resuming growth (Losick and Desplan 2008). This is an

example in which molecular systems compute by produc-

ing a distribution. In other cases cells need to shape noise

and compute on distributions instead of simply mean val-

ues. For example, in Schmiedel et al. (2015) the authors

show, both mathematically and experimentally, that

microRNA confers precision on the protein expression: it

shapes the noise of genes in a way that decreases the

intrinsic noise in protein expression, maintaining its

expected value almost constant. Thus, although funda-

mentally important, the mechanisms used by cells to

compute in a stochastic environment are not well

understood.

Chemical Reaction Networks (CRNs) with mass action

kinetics are a well studied formalism for modelling bio-

chemical systems, more recently also used as a formal

programming language (Chen et al. 2013). It has been

shown that any CRN can be physically implemented by a

corresponding DNA strand displacement circuit in a well-

mixed solution (Soloveichik et al. 2010). DNA-based cir-

cuits thus have the potential to operate inside cells and

control their activity. Winfree and Qian have also shown

that CRNs can be implemented on the surface of a DNA

nanostructure (Qian and Winfree 2014), enabling localized

computation and engineering biochemical systems where

the molecular interactions occur between few components.

When the number of interacting entities is small, the
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stochastic fluctuations intrinsic in molecular interactions

play a predominant role in the time evolution of the system.

As a consequence, ‘‘programming’’ a CRN to provide a

particular probabilistic response for a subset of species, for

example in response to environmental conditions, is

important for engineering complex biochemical nano-de-

vices and randomized algorithms. In this paper, we explore

the capacity of CRNs to ‘‘exactly program’’ discrete

probability distributions. That is, we give methods such

that the steady state distribution of a CRN can be chosen

from some desired target distribution. We aim to charac-

terize the probabilistic behaviour that can be obtained,

exploring both the capabilities of CRNs for producing

distributions and for computing on distributions by com-

posing them.

Contributions We show that at steady state CRNs are

able to compute any distribution with finite support in Nm,

with m� 1. We propose an algorithm to systematically

‘‘program’’ a CRN so that at steady state it produces any

given finite support distribution. Moreover, any distribution

with countable infinite support can be approximated with

arbitrarily small error under the L1 norm. The resulting

network has a number of reactions linear in the dimension

of the support of the distribution and the output is produced

monotonically allowing composition. Since distributions

with large support can result in unwieldy networks, we also

give optimised networks for special distributions, including

a novel scheme for the uniform distribution. We formulate

a calculus that is complete for finite support distributions,

which can be compiled to a restricted class of CRNs that at

steady state compute those distributions. The resulting

CRNs are generally more compact with respect to the ones

derived from direct approach. The calculus is equivalent to

the baricentric algebra presented in Mardare et al. (2016),

and allows for modelling of external influences on the

species. Our results are of interest for a variety of scenarios

in systems and synthetic biology. For example, they can be

used to program a biased stochastic coin or a uniform

distribution, thus enabling implementation of randomized

algorithms and protocols in CRNs.

Preliminary version of this work appeared as Cardelli

et al. (2016a). This paper includes an extended description

with illustrative examples and proofs of the results.

Related work It has been shown that CRNs with

stochastic semantics are Turing complete, up to an arbi-

trarily small error (Soloveichik et al. 2008). If we assume

error-free computation, their computational power decrea-

ses: they can decide the class of the semi-linear predicates

(Angluin et al. 2007) and compute semi-linear functions

(Chen et al. 2014). A first attempt to model distributions

with CRNs can be found in Fett et al. (2007), where the

problem of producing a single distribution is studied.

However, their circuits are approximated and cannot be

composed to compute operations on distributions.

2 Chemical reaction networks

A chemical reaction network (CRN) ðK;RÞ is a pair of

finite sets, where K is the set of chemical species, jKj
denotes its size, and R is a set of reactions. A reaction

s 2 R is a triple s ¼ ðrs; ps; ksÞ, where rs 2 NjKj is the

source complex, ps 2 NjKj is the product complex and ks 2
R[ 0 is the coefficient associated to the rate of the reaction,

where we assume ks ¼ 1 if not specified; rs and ps repre-

sent the stoichiometry of reactants and products. Given a

reaction s1 ¼ ð½1; 0; 1�; ½0; 2; 0�; k1Þ we often refer to it as

s1 : k1 þ k3 !k1 2k2. The net change (or state change)

associated to s is defined by ts ¼ ps � rs.

We assume that the system is well stirred, that is, the

probability of the next reaction occurring between two

molecules is independent of the location of those mole-

cules, at fixed volume V and temperature. Under these

assumptions a configuration or state of the system x 2 NjKj

is given by the number of molecules of each species.

A chemical reaction system (CRS) C ¼ ðK;R; x0Þ is a

tuple where ðK;RÞ is a CRN and x0 2 NjKj represents its

initial condition.

2.1 Stochastic semantics

The stochastic semantics of a CRS is given in terms of a

continuous time Markov chain (CTMC). Here, we intro-

duce the semantics according to the representation of

Markov processes proposed by Ethier and Kurtz (2009,

Theorem 4.1 Chapter 6). Such representation is equivalent

to the classical model described by the Chemical Master

Equation, but much more compact. It allows us to represent

the CTMC in terms of stochastic equations, which have a

similar structure to the deterministic rate equations. We

illustrate the semantics with the help of Example 1. Below

we present Poisson processes, as they will be used in the

semantics and in the paper. A building block of the

mathematical models we use in the paper is a counting

process. Intuitively, a counting process Y is a process such

that Y(t) counts the number of times that a particular phe-

nomenon has been observed by time t.

Definition 1 (Counting process) Y is a counting process if

Yð0Þ ¼ 0 and Y is constant except for jumps of þ1:

Definition 2 (Poisson process) A counting process Y is a

Poisson process if:
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– Number of observations in disjoint time intervals are

independent random variables, that is, YðtkÞ� Yðtk�1Þ;
k 2 N, are independent random variables.

– The distribution of Yðt þ DtÞ � YðtÞ is independent of

t.

Theorem 1 (Anderson and Kurtz 2015) If Y is a Poisson

process, then there exists a constant k[ 0 such that for

t2 [ t1 2 R� 0 and k 2 N it holds that

ProbðYðt2Þ � Yðt1Þ ¼ kÞ ¼ ðkðt2 � t1ÞÞk

k!
e�kðt2�t1Þ

That is, Yðt2Þ � Yðt1Þ is Poisson distributed with parameter
kðt2 � t1Þ:

If k ¼ 1; we call Y a unit Poisson process.

Example 1 Consider the CRN described by the following

reactions

s1 : k1 þ k2 !k1 k1 þ k1; s2 : k1 þ k2 !k2 k2 þ k2

and let Xð0Þ 2 N2 be the initial condition. Then, the state

of the system at time t� 0 will be given by X(0) plus the

number of times that each reaction have fired between

[0, t] multiplied by the respective state change vector. That

is,

XðtÞ ¼ Xð0Þ þ
1

�1

� �
Rs1
ðtÞ þ

�1

1

� �
Rs2
ðtÞ

where Rs1
ðtÞ;Rs2

ðtÞ are counting processes that count the

number of times that the particular reaction has fired until

time t. We now assume that Rs are independent, unit

Poisson processes that depend on the propensity rate of s.

More precisely, RsðtÞ ¼ Ysð
R t

0
aðXðsÞÞdsÞ; where

Ysð
R t

0
aðXðsÞÞdsÞ is a unit Poisson process with intensityR t

0
aðXðsÞÞds. Intuitively,

R t

0
aðXðsÞÞds gives the time

interval in which counting events for the unit Poisson

process. Under this modelling assumptions it holds that

(Ethier and Kurtz 2009)

ProbðYs
Z tþDt

0

asðXðsÞÞds
� �

� Ys

Z t

0

asðXðsÞdsÞ
�

[ 0j8s 2 ½0; t;XðsÞÞ � asðXðtÞÞDt:

That is, the probability that a reaction s happens in the next

Dt, at the first order, is given by the propensity rate of s at

time t multiplied by Dt, exactly as in the classical

stochastic representation (Van Kampen 1992) of CRNs. At

this point, for our model, we can write its stochastic model

as

XðtÞ ¼Xð0Þ

þ
1

�1

� �
Ys1

ks1

Z t

0

Xk1
ðsÞXk2

ðsÞds
� �

þ
�1

1

� �
Ys2

ks2

Z t

0

Xk1
ðsÞXk2

ðsÞds
� �

:

Theorem 2 below shows that the forward equation asso-

ciated with the Markov process described in the previous

stochastic equation is exactly the Chemical Master

Equation (CME).

Definition 3 Given a CRS C ¼ ðK;R; x0Þ; we define its

stochastic semantics at time t as

XCðtÞ ¼ x0 þ
X
s2R

tsYs

Z t

0

asðXCðsÞdsÞ
� �

ð1Þ

where Ys are unit Poisson processes, independent of each

other.

Theorem 2 (Ethier and Kurtz 2009) Let C ¼ ðK;R; x0Þ be
a CRS and XC be the stochastic process as defined in

Eq. (1). Define ProbðXCðtÞ ¼ xjXCð0Þ ¼ x0Þ ¼ PCðtÞðxÞ.
Assume that, for each s 2 R and t 2 R� 0; X

CðtÞ\1;

then

dPCðtÞðxÞ
dt
¼

X
s2R

PCðtÞðx� tsÞasðXCðtÞÞ � PCðtÞðxÞasðXCðtÞÞ:

ð2Þ

PCðtÞðxÞ represents the transient evolution of XC, and

can be calculated exactly by solving directly the Chemical

Master Equation or by approximation techniques (Cardelli

et al. 2016b, c; Bortolussi et al. 2016).

Definition 4 The steady state distribution (or limit distri-

bution) of XC is defined as pC ¼ limt!1 PCðtÞ:

When clear from the context, we omit the superscript

indicating the CRN and simply write p instead of pC. p
calculates the percentage of time, in the long-run, that

X spends in each state x 2 S. If S is finite, then the above

limit distribution always exists and is unique (Kwiat-

kowska et al. 2007). In this paper we focus on discrete

distributions, and will sometimes conflate the term distri-

bution with probability mass function, defined next.

Definition 5 Suppose that M : S! Rm with m[ 0 is a

discrete random variable defined on a countable sample

space S. Then the probability mass function (pmf) f :

Rm ! ½0; 1� for M is defined as

f ðxÞ ¼ Probðs 2 S j MðsÞ ¼ xÞ:

For a pmf p : Nm ! ½0; 1� we call J¼fy2NmjpðyÞ 6¼0g
the support of p. A pmf is always associated to a discrete
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random variable whose distribution is described by the

pmf. Sometimes, when we refer to a pmf, we imply the

associated random variable. Given two pmfs f1 and f2 with

values in Nm, m[0, we define the L1 norm (or distance)

between them as d1ðf1;f2Þ¼
P

n2Nmðjf1ðnÞ� f2ðnÞjÞ. Note

that, as f1;f2 are pmfs, then d1ðf1;f2Þ�2. It is worth

stressing that, given the CTMC X, for each t2R�0, X(t) is

a random variable defined on a countable state space. As a

consequence, its distribution is given by a pmf. Likewise,

the limit distribution of a CTMC, if it exists, is a pmf.

Definition 6 Given C ¼ ðK;RÞ and k 2 K, we define

pkðkÞ ¼
P
fx2SjxðkÞ¼kg pðxÞ as the probability that for

t!1, in XC, there are k molecules of k.

pk is a pmf representing the steady state distribution of

species k.

3 On computing finite support distributions
with CRNs

We now show that, for a pmf with finite support in N, we

can always build a CRS such that, at steady state (i.e. for

t!1) the random variable representing the molecular

population of a given species in the CRN is equal to that

distribution. Such result allows us to approximate any

distribution with countable infinite support with arbitrarily

small error under the L1 norm. The result is then gener-

alised to distributions with domain in Nm, with m� 1. The

approximation is exact in case of finite support.

3.1 Programming pmfs

Definition 7 Given f : N! ½0; 1� with finite support J ¼
ðz1; . . .; zjJjÞ such that

PjJj
i¼1 f ðziÞ ¼ 1, we define the CRS

Cf ¼ ðK;R; x0Þ as follows. Cf is composed of 2|J| reactions

and 2jJj þ 2 species. For any zi 2 J we have two species

ki; ki;i 2 K such that x0ðkiÞ ¼ zi and x0ðki;iÞ ¼ 0. Then, we

consider a species kz 2 K such that x0ðkzÞ ¼ 1, and the

species kout 2 K, which represents the output of the net-

work and such that x0ðkoutÞ ¼ 0. For every zi 2 J, R has the

following two reactions: si;1 : kz !f ðziÞ ki;i and

si;2 : ki þ ki;i ! kout þ ki;i.

Example 2 Consider the probability mass function f :

N! ½0; 1� defined as f ðyÞ ¼

1

6
; if y ¼ 2

1

3
; if y ¼ 5

1

2
; if y ¼ 10

0; otherwise

8>>>>>><
>>>>>>:

.

Let K ¼ fk1; k2; k3; kz; k1;1; k2;2; k3;3; koutg, then we build

the CRS C ¼ ðK;R; x0Þ following Definition 7, where R is

given by the following set of reactions:

kz !
1
6 k1;1; kz !

1
3 k2;2; kz !

1
2 k3;3;

k1 þ k1;1 !1 k1;1 þ kout; k2 þ k2;2 !1 k2;2 þ kout;

k3 þ k3;3 !1 k3;3 þ kout:

The initial condition x0 is x0ðkoutÞ ¼ x0ðk1;1Þ ¼ x0ðk2;2Þ ¼
x0ðk3;3Þ ¼ 0; x0ðk1Þ ¼ 2; x0ðk2Þ ¼ 5; x0ðk3Þ ¼ 10;

x0ðkzÞ ¼ 1: Theorem 3 ensures pkout ¼ f .

Theorem 3 Given a pmf f : N! ½0; 1� with finite support

J, the CRS Cf as defined in Definition 7 is such that

pCf

kout
¼ f .

Proof Let J ¼ ðz1; ::; zjJjÞ be the support of f, and |J| its

size. Suppose |J| is finite, then the set of reachable states

from x0 is finite by construction and the limit distribution of

XCf , the induced CTMC, exists. By construction, in the

initial state x0 only reactions of type si;1 can fire, and the

probability that a specific si;1 fires first is exactly:

asi;1ðx0ÞPjJj
j¼1 asj;1ðx0Þ

¼ f ðziÞ � 1PjJj
j¼1 f ðzjÞ � 1

¼ f ðziÞPjJj
j¼1 f ðzjÞ

¼ f ðziÞ
1
¼ f ðziÞ

Observe that the firing of the first reaction uniquely defines

the limit distribution of XCf , because kz is consumed

immediately and only reaction si;2 can fire, with no race

condition, until ki are consumed. This implies that at steady

state kout will be equal to x0ðkiÞ, and this happens with

probability f ðx0ðkiÞÞ. Since x0ðkiÞ ¼ zi for i 2 ½1; jJj�, we

have p
Cf

kout
¼ f . h

Then, we can state the following corollary of

Theorem 3.

Corollary 1 Given a pmf f : N! ½0; 1� with count-

able support J, we can always find a finite CRS Cf such

that pCf

kout
¼ f with arbitrarily small error under the L1

norm.

Proof Let J ¼ fz1; . . .; zjJjg. Suppose J is (countably)

infinite, that is, jJj ! 1. Then, we can always consider an

arbitrarily large but finite number of points in the support,

such that the probability mass lost is arbitrarily small, and

applying Definition 7 on this finite subset of the support we

have the result.

In order to prove the result consider the function f 0 with

support J0 ¼ fz1; . . .; zkg, k 2 N, such that f ðziÞ ¼ f 0ðziÞ,
for all i 2 N� k. Consider the series

P1
i¼1 f ðnÞ. This is an

absolute convergent series by definition of pmf. Then, we
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have that limi!1 f ðiÞ ¼ 0 and, for any �[ 0, we can

choose some je 2 N, such that:

8k[ je j
Xk
i¼1

f 0ðiÞ �
X1
i¼1

f ðiÞj\ �

2
:

This implies that for k[ je given f 0k ¼
Pk

i¼1 f
0ðiÞ we have,

d1ðf 0k; f Þ\�. h

The following remark shows that the need for precisely

tuning the value of reaction rates in Theorem 3 can be

dropped by introducing some auxiliary species.

Remark 1 In practice, tuning the rates of a reaction can be

difficult or impossible. However, it is possible to modify

the CRS derived using Definition 7 in such a way the

probability value is not encoded in the rates, and we just

require that all reactions have the same rates. We can do

that by using some auxiliary species

Kc ¼ fkc1
; kc2

; . . .; kcjKc j g. Then, the reactions si;1 for i 2
½1; J� become si;1 : kz þ kci !k ki;i, for k� 0, instead of

si;1 : kz !f ðyiÞ ki;i, as in the original definition. The initial

condition of kci is x0ðkciÞ ¼ f ðyiÞ � L, where L 2 N is such

that for j 2 ½1; jJj� and J ¼ fz1; . . .; zjJjg we have that f ðzjÞ �
L is a natural number, assuming all the f ðzjÞ are rationals.

Remark 2 In biological circuits the probability distribu-

tion of a species may depend on some external conditions.

For example, the lambda Bacteriofage decides to lyse or

not to lyse with a probabilistic distribution based also on

environmental conditions (Arkin et al. 1998). Program-

ming similar behaviour is possible by extension of Theo-

rem 3. For instance, suppose, we want to program a switch

that with rate 50þ Com goes to state O1, and with rate

5000 goes to a different state O2, where Com is an external

input. To program this logic we can use the following

reactions: s1;1 : kz þ kc1
!k1 kO1

and s1;2 : kzþ
kc2
!k1 kO2

, where kO1
and kO2

model the two logic states,

initialized at 0. The initial condition x0 is such that

x0ðkzÞ ¼ 1, x0ðkc1
Þ ¼ 50 and x0ðkc2

Þ ¼ 5000. Then, we add

the following reaction Com!k2 kc1
. It is easy to show that

if k2 � k1 then we have the desired probabilistic behaviour

for any initial value of Com 2 N. This may be of interest

also for practical scenarios in synthetic biology, where for

instance the behaviour of synthetic bacteria needs to be

externally controlled (Anderson et al. 2006); and, if each

bacteria is endowed with a similar logic, then, by tuning

Com, at the population level, it is possible to control the

fraction of bacteria that perform this task.

In the next theorem we generalize to the multidimen-

sional case.

Theorem 4 Given f : Nm ! ½0; 1� with m� 1 such thatP
i2Nm f ðiÞ ¼ 1, then there exists a CRS C ¼ ðK;R; x0Þ

such that the joint limit distribution of ðkout1 ;
kout2 ; . . .; koutmÞ 2 K approximates f with arbitrarily small

error under the L1 distance. The approximation is exact if

the support of f is finite.

To prove this theorem we can derive a CRS similar to

that in the uni-dimensional case. The firing of the first

reaction can be used to probabilistically determine the

value at steady state of the m output species, using some

auxiliary species.

Example 3 Consider the following probability mass

function

f ðy1; y2Þ ¼

1

6
; if y1 ¼ 3 and y2 ¼ 1

1

3
; if y1 ¼ 3 and y2 ¼ 2

1

2
; if y1 ¼ 1 and y2 ¼ 5

0; otherwise

8>>>>>>>><
>>>>>>>>:

we present the CRS C ¼ ðK;R; x0Þ that according to its

stochastic semantics, for kout1 ; kout2 2 K yields the steady-

state distribution pkout1 ;kout2 , joint limit distribution of

kout1 ; kout2 , exactly equal to f. Let K ¼ fkz; ka; kb;
kc; k1;1; k1;2k2;1; k2;2; k3;1; k3;2kout1 ; kout2g and R given by

the following set of reactions:

s1 : kz !
1
6 ka; s2 : kz !

1
3 kb; s3 : kz !

1
2 kc;

s4 : k1;1 þ ka !1 ka þ kout1 ;

s5 : k1;2 þ ka !1 ka þ kout2 ;

s6 : k2;1 þ kb !1 kb þ kout1 ;

s7 : k2;2 þ kb !1 kb þ kout2 ;

s8 : k3;1 þ kc !1 kc þ kout1 ;

s9 : k3;2 þ kc !1 kc þ kout2 ;

The initial condition x0 is such that:

x0ðkzÞ ¼ 1;

x0ðk1;1Þ ¼ 3; x0ðk1;2Þ ¼ 1; x0ðk2;1Þ ¼ 3;

x0ðk2;2Þ ¼ 2; x0ðk3;1Þ ¼ 1; x0ðk3;2Þ ¼ 5;

and all other species mapped to zero. The set of reachable

states from x0 is finite so the limit distribution exists. The

firing of the first reaction uniquely determines the steady

state solution. x0ðki;1Þ and x0ðki;2Þ for i 2 ½1; 3� are exactly

the value of kout1 and kout2 at steady state if the first reaction

to fire is si; this happens with probability

f ðx0ðki;1Þ; x0ðki;2ÞÞ. Therefore, we have that, at steady state,

the joint distribution of kout1 and kout2 equals f.
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3.2 Special distributions

For a given pmf the number of reactions of the CRS

derived from Definition 7 is linear in the dimension of its

support. As a consequence, if the support is large then the

CRSs derived using Theorems 3 and 4 can be unwieldy. In

the following we show three optimised CRSs to calculate

the Poisson, binomial and uniform distributions. These

CRNs are compact and applicable in many practical sce-

narios. However, using Definition 7 the output is always

produced monotonically. In the circuits below this does not

happen, but, on the other hand, the gain in compactness is

substantial. The first two circuits have been derived from

the literature, while the CRN for the uniform distribution is

new.

3.2.1 Poisson distribution

The main result of Anderson et al. (2010) guarantees that

all the CRNs that respect some conditions (weakly rever-

sible, deficiency zero and irreducible state space, see

Anderson et al. 2010) have a distribution given by the

product of Poisson distributions. As a particular case, we

consider the following CRS composed of only one species

k and the following two reactions s1 : ; !k1 k; s2 : k!k2

;: Then, at steady state, k has a Poisson distribution with

expected value k1

k2
.

3.2.2 Binomial distribution

We consider the network introduced in Anderson et al.

(2010). The CRS is composed of two species, k1 and k2,

with initial condition x0 such that x0ðk1Þ þ x0ðk2Þ ¼ K and

the following set of reactions: s1 : k1 !k1 k2; s2 : k2 !k2

k1: As shown in Anderson et al. (2010), k1 and k2 at steady

state have a binomial distribution such that: pk1
ðyÞ ¼

ðK
y
Þc1

yð1� c1ÞK�y and pk2
ðyÞ ¼ ðK

y
Þc2

yð1� c2ÞK�y .

3.2.3 Uniform distribution

The following CRS computes the uniform distribution over

the sum of the initial number of molecules in the system,

independently of the initial value of each species. It has

species k1 and k2 and reactions:

s1 : k1 !k k2; s2 : k2 !k k1;

s3 : k1 þ k2 !k k1 þ k1; s4 : k1 þ k2 !k k2 þ k2

For k[ 0, s1 and s2 implement the binomial distribution.

These are combined with s3 and s4, which implement a

Direct Competition (DC) system (Cardelli and Csikász-

Nagy 2012). DC has a bimodal limit distribution in 0 and in

K, where x0ðk1Þ þ x0ðk2Þ ¼ K, with x0 initial condition.

This network, surprisingly, according to the next theorem,

at steady state produces a distribution which varies uni-

formly between 0 and K.

Theorem 5 Let x0ðk1Þ þ x0ðk2Þ ¼ K 2 N. Then, the CRS

described above has the following steady state distribution

for k1 and k2:

pk1
ðyÞ ¼ pk2

ðyÞ ¼
1

K þ 1
; if y 2 ½0;K�

0; otherwise

8<
: :

Proof We consider a general initial condition x0 such that

x0ðk1Þ ¼ K �M and x0ðk2Þ ¼ M for 0�M�K and

K;M 2 N. Because any reaction has exactly 2 reagents and

2 products, we have the invariant that for any configuration

x reachable from x0 it holds that xðk1Þ þ xðk2Þ ¼ K. Fig-

ure 1 plots the CTMC semantics of the system.

For any fixed K the set of reachable states from any

initial condition in the induced CTMC is finite (exactly

K states are reachable from any initial condition) and

irreducible. Therefore, the steady state solution exists, is

unique and independent of the initial conditions. To find

this limit distribution we can calculate Q, the infinitesimal

generator of the CTMC, and then solve the linear equations

system pQ ¼ 0, with the constraint that
P

i2½0;K� pi ¼ 1,

where pi is the ith component of the vector p, as shown in

Kwiatkowska et al. (2007). Because the CTMC we are

considering is irreducible, this is equivalent to solving the

balance equations with the same constraint. The resulting p
is the steady state distribution of the system.

We consider 3 cases, where ðK � j; jÞ for j 2 ½0;K�
represents the state of the system in terms of molecules of

k1 and k2.

– Case j ¼ 0. For the state (K, 0), whose limit distribu-

tion is defined as pðK; 0Þ; we have the following

balance equation:

� pðK; 0ÞKk þ pðK � 1; 1Þ½ðK � 1Þk þ k� ¼ 0)
pðK; 0Þ ¼ pðK � 1; 1Þ:

– Case j 2 ½1;K � 1�. In Fig. 1 we see that the states and

the rates follow a precise pattern: every state is directly

connected with only two states and for any transition

the rates depend on two reactions, therefore we can

consider the balance equations for a general state

ðK � j; jÞ for j 2 ½1;K � 1� (for the sake of a lighter

notation instead of pðK � j; jÞ we write p j):
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pj�1½K þ 1� jþ ðK þ 1� jÞðj� 1Þ� � p j½2ðK � jÞj
þ jþ K � j� þ pjþ1½jþ 1þ ðK � j� 1Þðjþ 1Þ� ¼ 0

)
pj�1½Kj� j2 þ j� � p j½2Kj� 2j2 þ K�
þ pjþ1½Kjþ K � j2 � j� ¼ 0

It is easy to verify that if pj�1 ¼ pj ¼ pjþ1 then the

equation is proved.

– Case j ¼ K. The case for the state (0, K) is similar to

the case (K, 0).

We have shown that each reachable state has equal prob-

ability at steady state for any possible initial condition.

Therefore, because
PK

i¼0 p
i ¼ 1 and pkiðyÞ ¼P

xj2SjxjðkiÞ¼y p
j for y� 0, we have that for both k1 and k2

pk1
ðyÞ ¼ pk2

ðyÞ ¼
1

K þ 1
; if y 2 ½0;K�

0; otherwise

8<
:

h

4 Calculus of limit distributions of CRNs

In the previous section we have shown that CRNs are able

to program any pmf on N. We now define a calculus to

compose and compute on pmfs. We show it is complete

with respect to finite support pmfs on N. The calculus we

present is a left-invariant baricentric algebra (Mardare

et al. 2016). Then, we define a translation of this calculus

into a restricted class of CRNs. We prove the soundness of

such a translation, which thus yields an abstract calculus of

limit distributions of CRNs. For simplicity, in what follows

we consider only pmfs with support in N, but the results

can be generalised to the multi-dimensional case.

Definition 8 (Syntax) The syntax of formulae of our cal-

culus is given by

P :¼ ðPþ PÞ jminðP;PÞ j k � P j ðPÞD : P j one j zero
D :¼ p j p � ci þ D

where k 2 Q� 0, p 2 Q½0;1� are rational and V ¼ fc1; . . .;

cng is a set of variables with values in N.

A formula P denotes a pmf that can be obtained as a

sum, minimum, multiplication by a rational, or convex

combination of pmfs one and zero. Given a formula P,

variables V ¼ fc1; . . .; cng, called environmental inputs,

model the influence of external factors on the probability

distributions of the system. V(P) represents the variables in

P. An environment E : V ! Q½0;1� is a partial function

which maps each input ci to its valuation normalized to

[0, 1]. Given a formula P and an environment E, where

VðPÞ 	 domðEÞ, with dom(E) domain of E, we define its

semantics, ½½P��E, as a pmf (the empty environment is

denoted as ;). D expresses a summation of valuations of

inputs ci weighted by rational probabilities p, which eval-

uates to a rational ½½D��E for a given environment. We

require that, for any D, the sum of p coefficients in D is in

[0, 1]. This ensures that 0� ½½D��E � 1. The semantics is

defined inductively as follows, where the operations on

pmfs are defined in Sect. 4.1.

Definition 9 (Semantics) Given formulae P, P1; P2 and

an environment E, such that VðPÞ [ VðP1Þ [ VðP2Þ
	 domðEÞ, we define

½½one��E ¼ pone ½½zero��E ¼ pzero
½½P1 þ P2��E ¼ ½½P1��E þ ½½P2��E
½½minðP1;P2Þ��E ¼ minð½½P1��E; ½½P2��EÞ

½½k � P��E ¼
k1 � ð½½P��EÞ

k2

fork ¼ k1

k2

andk1; k2 2 N

½½ðP1ÞD : ðP2Þ��E ¼ ð½½P1��EÞ½½D��E : ð½½P2��EÞ
½½p��E ¼ p

½½p � ci þ D��E ¼ p � EðciÞ þ ð½½D��EÞ

where

poneðyÞ ¼
1; if y ¼ 1

0; otherwise

�
; pzeroðyÞ ¼

1; if y ¼ 0

0; otherwise

�
:

To illustrate the calculus, consider the Bernoulli distri-

bution with parameter p 2 Q½0;1�. We have

bernp ¼ ðoneÞp : zero, where ½½bernp��;ðyÞ ¼ fpify ¼ 1; 1�
pify ¼ 0; 0 otherwiseg .

The binomial distribution can be obtained as a sum of

n independent Bernoulli distributions of the same param-

Fig. 1 The figure shows the

CTMC induced by the CRS

implementing the uniform

distribution for initial condition

x0 such that

x0ðk1Þ þ x0ðk2Þ ¼ K
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eter. Given a random variable with a binomial distribution

with parameters (n, p), if n is sufficiently large and p suf-

ficiently small then this approximates a Poisson distribu-

tion with parameter n � p.

4.1 Operations on distributions

In this section, we define a set of operations on pmfs

needed to define the semantics of the calculus. We con-

clude the section by showing that these operations are

sufficient to represent pmfs with finite support in N.

Definition 10 Let p1 : N! ½0; 1�, p2 : N! ½0; 1� be two

pmfs. Assume p 2 Q½0;1�, y 2 N, k1 2 N and k2 2 N[ 0,

then we define the following operations on pmfs:

– The sum or convolution of p1 and p2 is defined as

ðp1 þ p2ÞðyÞ ¼
X

ðyi;yjÞ2N
N s:t: yiþyj¼y
p1ðyiÞp2ðyjÞ:

– The minimum of p1 and p2 is defined as

minðp1; p2ÞðyÞ
¼

X
ðyi;yjÞ2N
N s:t:minðyi;yjÞ¼y

p1ðyiÞp2ðyjÞ:

– The multiplication of p1 by the constant k1 is defined as

ðk1p1ÞðyÞ ¼
p1

y

k1

� �
; if

y

k1

2 N

0; otherwise

8<
:

– The division of p1 by the constant k2 is defined as

p
k2

ðyÞ ¼
X

yi2N s:t: y¼byi=k2c
pðyiÞ:

– The convex combination of p1 and p2, for y 2 N, is

defined as

ððp1Þp : ðp2ÞÞðyÞ ¼ pp1ðyÞ þ ð1� pÞp2ðyÞ:

Example 4 Consider the following pmf p1 : N! ½0; 1�

p1ðy1Þ ¼

1

6
; if y1 ¼ 3

5

6
; if y1 ¼ 0

0; otherwise

8>>>><
>>>>:

and the following pmf p2 : N! ½0; 1�

p2ðy2Þ ¼

1

2
; if y2 ¼ 5

1

2
; if y2 ¼ 1

0; otherwise

8>>>><
>>>>:

Then the sum of p1 and p2 is:

ðp1 þ p2ÞðyÞ ¼

1

12
; if y ¼ 8

5

12
; if y ¼ 5

1

12
; if y ¼ 4

5

12
; if y ¼ 1

0; otherwise

8>>>>>>>>>>>><
>>>>>>>>>>>>:

Example 5 Consider the pmfs p1 and p2 of Example 4

then

minðp1; p2ÞðyÞ ¼

1

12
; if y ¼ 3

1

12
; if y ¼ 1

5

6
; if y ¼ 0

0; otherwise

8>>>>>>>><
>>>>>>>>:

Example 6 Consider the pmf p2 of Example 4, then

2p2ðyÞ ¼

1

2
; if y ¼ 10

1

2
; if y ¼ 2

0; otherwise

8>>>><
>>>>:

Example 7 Consider the following formula

P1 ¼ ðoneÞ0:001�cþ0:2 : ð4 � oneÞ þ ð2 � oneÞ0:4 : ð3 � oneÞ;

with set of environmental variables V ¼ fcg and an envi-

roment E such that VðP1Þ 	 domðEÞ. Then, according to

Definition 10 we have that

½P1�EðyÞ ¼

ð0:001 � ½c�E þ 0:2Þ � 0:4; if y ¼ 3

ð0:001 � ½c�E þ 0:2Þ � 0:6; if y ¼ 4

ð1� ð0:001 � ½c�E þ 0:2ÞÞ � 0:4; if y ¼ 6

ð1� ð0:001 � ½c�E þ 0:2ÞÞ � 0:6; if y ¼ 7

0; otherwise

8>>>>>><
>>>>>>:

The convex combination operator is the only one that is

not closed with respect to pmfs whose support is a single

point. Lemma 1 shows the associativity of the convex

distribution.
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Lemma 1 Given probability mass functions p1,

p2 : N! ½0; 1�, p1; p2; p3; p4 2 ½0; 1� and k 2 Q� 0, then

the following equations hold:

– kððp1Þp : p2Þ ¼ ðkp1Þp : ðkp2Þ
– ððp1Þp1

: p2Þp2
: p3 ¼ ðp1Þp3

: ððp2Þp4
: p3Þ iff p3 ¼ p1p2

and p4 ¼ ð1�p1Þp2

1�p1p2

– ðp1Þp : p2 ¼ ðp2Þ1�p : p1

– ðp1Þp : p1 ¼ p1.

Proof We need to prove each statement.

Case kððp1Þp : p2Þ ¼ ðkp1Þp : ðkp2Þ.
For y 2 N we have that

kððp1Þp : p2ÞðyÞ
¼

X
yi2Ns:t:bkyic¼y

ðpp1ðyiÞ þ ð1� pÞðp2ðyiÞÞÞ

¼
X

yi2N s:t: bkyic¼y
ðpp1ðyiÞÞ

þ
X

yi2N s:t: bkyic¼y
ðð1� pÞðp2ðyiÞÞÞ

¼ p �
X

yi2N s:t: bkyic¼y
ðp1ðyiÞÞ þ ð1� pÞ�

X
yi2N s:t: bkyic¼y

ððp2ðyiÞÞÞ

¼ ðkp1Þp : ðkp2ÞÞðyÞ

Case ððp1Þp1
: p2Þp2

: p3 ¼ ðp1Þp3
: ððp2Þp4

: p3Þ iff

p3 ¼ p1p2 and p4 ¼ ð1�p1Þp2

1�p1p2
.

For y 2 N we have that

ððp1p1
: p2Þp2

: p3ÞðyÞ
¼ p2ðp1p1ðyÞ þ ð1� p1Þp2ðyÞÞ þ ð1� p2Þp3ðyÞ

ðp1p3
: ðp2p4

: p3ÞÞðyÞ
¼ p3p1ðyÞ þ ð1� p3Þðp4p2ðyÞ þ ð1� p4Þp3ðyÞÞ

These are equal if

p1p2 ¼ p3

p4 � p3p4 ¼ p2 � p1p2

1� p2 ¼ ð1� p3Þð1� p4Þ

and these conditions are satisfied if and only if p3 ¼ p1p2

and p4 ¼ ð1�p1Þp2

1�p1p2
.

Case ðp1Þp : p2 ¼ ðp2Þ1�p : p1.

For y 2 N by Definition 10 it holds that

ððp1Þp : p2ÞðyÞ ¼ pp1ðyÞ þ ð1� pÞp2ðyÞ
¼ ð1� pÞp2ðyÞ þ pp1ðyÞ ¼ ððp2Þ1�p : p1ÞðyÞ

Case ðp1Þp : p1 ¼ p1.

For y 2 N by Definition 10 it holds that

ððp1Þp : p1ÞðyÞ ¼ pp1ðyÞ þ ð1� pÞp1ðyÞ
¼ ðpþ 1� pÞp1ðyÞ ¼ p1ðyÞ

h

Having formally defined all the operations on pmfs, we

can finally state the following proposition guaranteeing that

the semantics of any formula of the calculus is a pmf.

Proposition 1 Given P, a formula of the calculus defined

in Definition 8, and an environment E such that

VðPÞ 	 domðEÞ, then ½½P��E is a pmf.

Proof The proof is by structural induction on the structure

of P with basic cases ½½one��E ¼ pone and ½½zero��E ¼ pzero,
which are pmfs by definition for any E. h

The following theorem shows that our calculus is

complete with respect to finite support distributions.

Theorem 6 For any pmf f : N! ½0; 1� with finite support

there exists a formula P such that ½½P��; ¼ f .

Proof Given a pmf f : N! ½0; 1� with finite support J ¼
ðz1; . . .; zjJjÞ we can define P ¼ ðz1 � oneÞf ðz1Þ : ððz2 �

oneÞ f ðz2Þ
1�f ðz1Þ

: ð. . . : ððzi � oneÞ f ðziÞQi�1

j¼1
ð1�f ðzjÞÞ

: . . . : ððzn � oneÞÞÞÞÞ.

Then, ½½P��; ¼ f . h

Proof of Theorem 6 relies only on a subset of the

operators, but the other operators are useful for composing

previously defined pmfs.

5 CRN implementation

We show how the operators of the calculus can be realized

by operators on CRSs. The resulting CRSs produce the

required distributions at steady state, that is, in terms of the

steady state distribution of the induced CTMC. Thus, we

need to consider a restricted class of CRNs that always

stabilize and that can be incrementally composed. The key

idea is that each such CRN has output species that cannot

act as a reactant in any reaction, and hence the counts of

those species increase monotonically.1 This implies that the

optimized CRSs shown in Sect. 3.2 cannot be used

compositionally.

1 Note that this is a stricter requirement than those in (Chen et al.

2014), where output species are produced monotonically, but they are

allowed to act as catalysts in some reactions. We cannot allow that

because catalyst species influence the value of the propensity rate of a

reaction and so the probability that it fires.
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5.1 Non-reacting output CRSs (NRO-CRSs)

Since in the calculus presented in Definition 8 we consider

only finite support pmfs, in this section we are limited to

finite state CTMCs. This is important because some results

valid for finite state CTMCs are not valid in infinite state

spaces. Moreover, any pmf with infinite support on natural

numbers can always be approximated under the L1 norm

(see Corollary 1).

Given a CRS C ¼ ðK;R; x0Þ, we call the non-reacting

species of C the subset of species Kr 	 K such that given

kr 2 Kr there does not exist s 2 R such that rkrs [ 0, where

rkrs is the component of the source complex of the reaction

s relative to kr, that is, kr is not a reactant in any reaction.

Given C we also define a subset of species, Ko 	 K, as the

output species of C. Output species are those whose limit

distribution is of interest. In general, they may or may not

be non-reacting species; they depend on the observer and

on what he/she is interested in observing.

Definition 11 A non-reacting output CRS (NRO-CRS) is

a tuple C ¼ ðK;Ko;R; x0Þ, where Ko 	 K are the output

species of C such that Ko 	 Kr, where Kr are the non-

reacting species of C.

NRO-CRNs are CRSs in which the output species are

produced monotonically and cannot act as a reactant in any

reaction. A consequence of Theorem 3 is the following

lemma, which shows that this class of CRNs can approx-

imate any pmf with support on natural numbers, up to an

arbitrarily small error.

Lemma 2 For any probability mass function f : Nm !
½0; 1� there exists a NRO-CRS such that the joint limit

distribution of its output species approximates f with

arbitrarily small error under the L1 norm. The approxi-

mation is exact if the support of f is finite.

Proof This lemma is a consequence of Theorems 3 and 4.

In fact, by construction, all CRSs used in those theorems

are non-reacting output. h

5.1.1 NRO-CRS operators

A NRO-CRS operator is a NRO-CRS such that, given as

input the output of certain NRO-CRSs, it produces as

output a (set of) species that at steady state implement a

given operation. We define the following NRO-CRS

operators and show their correctness.

Definition 12 Let C1 ¼ ðK1;Ko1
;R1; x01

Þ and C2 ¼
ðK2;Ko2

;R2; x02
Þ be NRO-CRSs such that K1 \ K2 ¼ ;.

Then, for ko1
2 Ko1

; ko2
2 Ko2

, fkout; kz; kr1
;

kr2
g \ ðK1 [ K2Þ ¼ ;, k 2 N; p 2 ½0; 1�, we define the fol-

lowing NRO-CRS operators:

SumðC1; ko1
;C2; ko2

; koutÞ
¼ ðK1 [ K2 [ fkoutg; fkoutg;R1 [ R2[
fko1
! kout; ko2

! koutg; x0Þ
MinðC1; ko1

;C2; ko2
; koutÞ

¼ ðK1 [ K2 [ fkoutg; fkoutg;R1 [ R2[
fko1
þ ko2

! koutg; x0Þ
MulðC1; ko1

; k; koutÞ
¼ ðK1 [ fkoutg; fkoutg;R1[

ko1 ! kout þ � � � þ kout|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
k times

8<
:

9=
;; x0Þ

DivðC1; ko1
; k; koutÞ

¼ ðK1 [ fkoutg; fkoutg;R1[

ko1
þ � � � þ ko1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
k times

! kout

8<
:

9=
;; x0Þ

ConðC1; ko1
;C2; ko2

; p; koutÞ
¼ ðK1 [ K2 [ fkz; kr1

; kr2
; koutg; fkoutg;R1 [ R2[

fkz !p kr1
; kz !1�p kr2

;

ko1
þ kr1

! kr1
þ kout; ko1

þ kr2
! kr2

þ koutg; x0Þ

where x0ðkÞ ¼

x01
ðkÞ ifk 2 K1

x02
ðkÞ ifk 2 K2

1 ifk ¼ kz
0 otherwise

8>><
>>:

Theorem 7 Let C1 ¼ ðK1;Ko1
;R1; x01

Þ and C2 ¼ ðK2;

Ko2
;R2; x02

Þ be NRO-CRSs such that K1 \ K2 ¼ ;. Then,
for ko1

2 Ko1
; ko2
2 Ko2

; kout 62 K1 [ K2, k 2 N; p 2 ½0; 1�
we have:

p
SumðC1;ko1

;C2;ko2
;koutÞ

kout
¼ pC1

ko1
þ pC2

ko2

p
MinðC1;ko1

;C2;ko2
;koutÞ

kout
¼ min pC1

ko1
; pC2

ko2

� �

p
MulðC1;ko1

;k;koutÞ
kout

¼ kpC1

ko1

p
DivðC1;ko1

;k;koutÞ
kout

¼
pC1

ko1

k

p
ConðC1;ko1

;C2;ko2
;p;koutÞ

kout
¼ pC1

ko1

� �
p
: pC2

ko2

The proof of Theorem 7 is not trivial, and is given in the

next subsection. The key difficulties lie in the fact that we

need to compose stochastic processes and show that the

resulting process has the required properties.

Example 8 We consider the pmfs p1 and p2 of Example 4.

Using the results of Theorem 3 we build the CRSs C1 and

C2 such that kout1 and kout2 , unique output species of C1 and
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C2 respectively, admit as steady state distribution exactly

p1 and p2. C1 ¼ ðfkz; k1; k1;1; ko1
g; fko1

g;R; x0Þ has the

following reactions

kz !
1
6 k1;1; kz !

5
6 ;; k1 þ k1;1 !1 k1;1 þ ko1

;

where ; is the empty set and x0 is such that:

x0ðk1Þ ¼ 3; x0ðkzÞ ¼ 1; x0ðk1;1Þ ¼ 0; x0ðko1
Þ ¼ 0.

The CRS C2 has the following reactions

kz0 !
1
2 k10;10 ; kz0 !

1
2 k20;20 ;

k10 þ k10;10 !1 k10;10 þ ko2
;

k20 þ k20;20 !1 k20;20 þ ko2
;

with initial condition x0 such that: x0ðk10 Þ ¼ 5; x0ðk0zÞ ¼
1; x0ðk10;10 Þ ¼ 0; x0ðk20;20 Þ ¼ 1; x0ðk20 Þ ¼ 5; x0ðko2

Þ ¼ 0.

Then, applying the Sum operator circuit, we add the fol-

lowing reactions

ko1
!1 kout; ko2

!1 kout;

SumðC1; ko1
;C2; ko2

; koutÞ has unique output species kout,
whose limit distribution, pkout , is equal to p1 þ p2 described

in Example 4.

In what follows, we present in extended form the

operator for convex combination, and introduce a new

operator, which implements the convex distribution with

external inputs (ConEð�Þ).
Considering C1 and C2, as previously, then we need to

derive a CRS operator ConðC1; ko1
;C2; ko2

; p; koutÞ such

that pkout ¼ ðpC1

ko1
Þp : ðp

C2

ko2
Þ. That is, at steady stade, kout

equals pC1

ko1
with probability p and pC2

ko2
with probability

1� p. This can be done by using Theorem 4 to generate a

bi-dimensional synthetic coin with output species kr1
; kr2

such that their joint limit distribution is

pkr1 ;kr2 ðy1; y2Þ ¼
p if y1 ¼ 1 and y2 ¼ 0

1� p if y1 ¼ 0 and y2 ¼ 1

0 otherwise

8><
>: :

That is, kr1
and kr2

are mutually exclusive at steady state.

Using these species as catalysts in s3 : ko1
þ kr1

! kr1
þ

kout and s4 : ko2
þ kr2

! kr2
þ kout we have exactly the

desired result at steady state.

Example 9 Consider the following NRO-CRSs C1 ¼
ðfko1

g; fko1
g; fg; x01

Þ and C2 ¼ ðfko2
g; fko2

g; fg; x02
Þ, with

initial condition x01
ðko1
Þ ¼ 10 and x02

ðko2
Þ ¼ 20. Then, the

operator ConðC1; ko1
;C2; ko2

; 0:3; koutÞ implements the

operation pkout ¼ ðpC1

ko1
Þ0:3ðp

C2

ko2
Þ and it is given by the fol-

lowing reactions:

kz !0:3 kr1
; kz !0:7 kr2

;

kr1
þ ko1

! kr1
þ kout; kr2

þ ko2
! kr2

þ kout

with initial condition x0 such that x0ðkzÞ ¼ 1,

x0ðkr1
Þ ¼ x0ðkr2

Þ ¼ x0ðkoutÞ ¼ 0:

Let C1;C2 be as above and f ¼ p0 þ p1 � c1 þ � � � þ pn �
cn with p1; . . .; pn 2 Q½0;1�, V ¼ fc1; . . .; cng a set of envi-

ronmental variables, and E, an environment such that

V 	 domðEÞ. Then, computing a CRS operator

ConEðC1; ko1
;C2; ko2

; f ðEðVÞÞ; koutÞ such that pkout ¼
ðpC1

ko1
Þf ðEðVÞÞ : ðp

C2

ko2
Þ is a matter of extending the previous

circuit. First of all, we can derive the CRS to compute

f(E(V)) and 1� f ðEðVÞÞ and memorize them in some

species. This can be done as f(E(V)) is semi-linear (Chen

et al. 2014). Then, as f ðEðVÞÞ� 1 by assumption, we can

use these species as catalysts to determine the output value

of kout, as in the previous case. As shown in Sect. 5.2, this

circuit, in the case of external inputs, introduces an arbi-

trarily small, but non-zero, error, due to the fact that there

is no way to know when the computation of f(E(V))

terminates.

Example 10 Consider the following NRO-CRSs C1 ¼
ðfko1

g; fko1
g; fg; x01

Þ and C2 ¼ ðfko2
g; fko2

g; fg; x02
Þ, with

initial condition x01
ðko1
Þ ¼ 10 and x02

ðko2
Þ ¼ 20. Then,

consider the following functions f ðEðcÞÞ ¼ EðcÞ, where

E is a partial function assigning values to c, and it is

assumed 0:001�EðcÞ� 1 and that EðcÞ � 1000 2 N. Then,

the operator ConEðC1; ko1
;C2; ko2

; f ; koutÞ, implements the

operation pkout ¼ ðpC1

ko1
ÞEðcÞðp

C2

ko2
Þ and it is given by the

following reactions:

s1 : kc !k1 kCat1 þ kCat2 ; s2 : kTot þ kCat2 !k1 ;
s3 : kz þ kCat1 !k2 k1; s4 : kz þ kTot !k2 k2

s5 : ko1
þ k1 !k2 k1 þ kout; s6 : ko2

þ k2 !k2 k2 þ kout

where kc; kCat1 ; kCat2 ; kz; k1 and k2 are auxiliary species

with initial condition x0 such that x0ðkCat1Þ ¼ x0ðkCat2Þ ¼
x0ðk1Þ ¼ x0ðk2Þ ¼ 0; x0ðkTotÞ ¼ 1000; x0ðkzÞ ¼ 1, x0ðkcÞ ¼
EðcÞ � 1000 and k1 � k2. Reactions s1; s2 implement

f(E(c)) and 1� f ðEðcÞÞ and store these values in kCat1 and

kTot. These are used in reactions s3 and s4 to determine the

probability that the steady state value of kout is going to be

determined by reaction s5 or s6.

5.2 Correctness of the CRS-operators

We prove the correctness of Theorem 7. For the sake of

simplicity, we consider only the Sum operator, as other

operators have similar proofs. The key idea of the proof is

to make use of Eq. (1) to show that the resulting CRS

implements the desired operation at steady state.
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Proposition 2 Let C1 ¼ ðK1;Ko1
;R1; x01

Þ; C2 ¼ ðK2;

Ko2
;R2; x02

Þ be NRO-CRSs such that K1 \ K2 ¼ ; and

fkoutg \ ðK1 [ K2Þ ¼ ;. Then for ko1
2 Ko1

and ko2
2 Ko2

the CRS SumðC1; ko1
;C2; ko2

; koutÞ ¼ Cc is such that

pCc

kout
¼ pC1

ko1
þ pC2

ko2
.

Proof Consider the counting processes JCc

ko1
and JCc

ko2
,

acording to the stocahstic model introduced in (1), which

give the number of molecules of ko1
and ko2

produced until

time t in Cc. Using Eq. (1) we have

JCc

ko1
ðtÞ ¼

X
s2R1[R2[fss1 ;ss2g

p
ko1
s Ys

Z t

0

asðXCcðsÞÞ ds
� �

JCc

ko2
ðtÞ ¼

X
s2R1[R2[fss1 ;ss2g

p
ko2
s Ys

Z t

0

asðXCcðsÞÞ ds
� �

where p
ko1
s and p

ko2
s represent the number of molecules of

ko1
and ko2

produced by the occurrence of reaction s.

Recall that ss1
and ss2

are such that ss1
: ko1

! kout and

ss2
: ks2
! kout and K1 \ K2 ¼ ;. As a consequence, p

ko1
ss1
¼

p
ko1
ss2
¼ p

ko2
ss1
¼ p

ko2
ss2
¼ 0 and we can write

JCc

ko1
ðtÞ ¼

X
s2R1[R2[fss1 ;ss2g

p
ko1
s Ys

Z t

0

asðXCcðsÞÞ ds
� �

¼
X
s2R1

p
ko1
s Ys

Z t

0

asðXCcðsÞÞ ds
� �

and

JCc

ko2
ðtÞ

¼
X

s2R1[R2[fss1 ;ss2g
p
ko2
s Ys

Z t

0

asðXCcðsÞÞ ds
� �

¼
X
s2R2

p
ko2
s Ys

Z t

0

asðXCcðsÞÞ ds
� �

Moreover, rkss1
¼ pkss1

¼ rkss2
¼ pkss2

¼ 0 for any

k 2 K� fkout; ko1
; ko2
g, that is, ss1

and ss2
do not produce

or consume any species in K� fkout; ko1
; ko2
g. As a con-

sequence, because x0ðkÞ ¼ x01
ðkÞ for all k 2 K1 � fko1

g,
we have

R t

0
asðXCcðsÞÞ ds ¼

R t

0
asðXC1ðsÞÞ ds for all s 2 R1 .

In exactly the same way, it is possible to show that the

same relation holds for ko2
with respect to XC2 , and as a

consequence it is also true that
R t

0
asðXCcðsÞÞ ds ¼R t

0
asðXC2ðsÞÞ ds for all s 2 R2. As a result:

X
s2R1

p
ko1
s Ys

Z t

0

asðXCcðsÞÞ ds
� �

¼
X
s2R1

p
ko1
s Ys

Z t

0

asðXC1ðsÞÞ ds
� �

X
s2R2

p
ko2
s Ys

Z t

0

asðXCcðsÞÞ ds
� �

¼
X
s2R2

p
ko2
s Ys

Z t

0

asðXC2ðsÞÞ ds
� �

Considering that ko1
is an output species in C1 and ko2

is an

output species in C2, that is, NRO-CRSs, then for any s 2
R1 we have that t

ko1
s ¼ p

ko1
s and for any s 2 R2 t

ko2
s ¼ p

ko2
s .

As a consequence:

XC1

ko1
ðtÞ ¼XCs

ko1
ð0Þ þ

X
s2R1

p
ko1
s Ys

Z t

0

asðXC1ðsÞÞ ds
� �

¼XC1

ko1
ð0Þ þ JCc

ko1
ðtÞ

XC2

ko2
ðtÞ ¼XC2

ko2
ð0Þ þ

X
s2R2

p
ko2
s Ys

Z t

0

asðXC2ðsÞÞ ds
� �

¼XC2

ko2
ð0Þ þ JCc

ko2
ðtÞ

According to the fact that in the composed NRO-CRS kout
is produced only by ss1

and ss2
such that pkoutss1

¼ pkoutss2
¼ 1,

and that kout is not consumed in any reaction, and its initial

molecular count is 0. Then, it is possible to write:

XCc

kout
ðtÞ ¼ 0þ Yss1

Z t

0

ascðXCcðsÞÞds
� �

þ Yss2

Z t

0

ascðXCcðsÞ
� �

dsÞ

In the same way we can define the stochastic model for the

number of molecules of ko1
or ko2

present in Cc at a given

time, as given by the number of molecules produced minus

the number of molecules consumed. As ko1
and ko2

are

consumed only by ss1
and ss2

, and they are not reactant in

any other reaction, we have:

XCc

ko1
þko2
ðtÞ ¼XCc

ko1
ð0Þ þ XCc

ko2
ð0Þ

þ
X
s2R1

p
ko1
s Ys

Z t

0

asðXC1ðsÞÞ ds
� �

þ
X
s2R2

p
ko2
s Ys

Z t

0

asðXC2ðsÞÞ ds
� �

� Yss1

Z t

0

ascðXCcðsÞÞds
� �

� Yss2

Z t

0

ascðXCcðsÞÞds
� �

¼XC1

ko1
ðtÞ þ XC2

ko2
ðtÞ � XCc

kout
ðtÞ

because XCc

ko1
ð0Þ ¼ XC1

ko1
ð0Þ and XCc

ko2
ð0Þ ¼ XC1

ko2
ð0Þ by

assumption.

The set of reachable states from x0 in XCc is finite

because the set of reachable states from x01
in XC1 and from

x02
in XC2 are finite by assumption and sc, in a finite time,

can fire only a finite number of times. This implies that

XCcðtÞ for t!1 will reach a bottom strongly connected
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component (BSCC) of the underlying graph of the state

space, with probability 1 in finite time, because of a well

known result of CTMC theory (Kwiatkowska et al. 2007).

In a BSCC, any pair of configurations x1 and x2 are such

that x1 !� x2 and x2 !� x1. Therefore, any configuration

x in any BSCC reachable by XCc from x0 is such that

xðko1
Þ ¼ x0ðko2

Þ ¼ 0, because in a configuration xi where

xiðko1
Þ[ 0 or xiðko2

Þ[ 0 it is always possible to reach a

configuration xj where xjðko1
Þ ¼ xiðko1

Þ � 1 or xjðko2
Þ ¼

xiðko2
Þ � 1 and xjðkoutÞ ¼ xiðkoutÞ þ 1, but then there is no

way to reach xi from xj because kout is not reactant in any

reaction in R1 [ R2 [ fss1
; ss2
g. Therefore

lim
t!1

ProbðXCc

ko1
þko2
ðtÞ ¼ 0jXCcð0Þ ¼ x0Þ ¼ 1)

lim
t!1

ProbðXC1

ko1
ðtÞ þ XC2

ko2
ðtÞ � XCc

kout
ðtÞ ¼ 0j

XCcð0Þ ¼ x0;X
C1ð0Þ ¼ x01

;

XC2ð0Þ ¼ x02
Þ ¼ 1)

lim
t!1

ProbðXCc

kout
ðtÞ ¼ XC1

ko1
ðtÞ þ XC2

ko2
ðtÞj

XCcð0Þ ¼ x0;X
C1ð0Þ ¼ x01

;

XC2ð0Þ ¼ x02
Þ ¼ 1

This concludes the proof. h

5.3 Compiling into the class of NRO-CRSs

Given a formula P as defined in Definition 8, then ½½P��E
associates to P and an environment E a pmf. We now

define a translation of P, T(P), into the class of NRO-CRSs

that guarantees that the unique output species of T(P), at

steady state, approximates ½½P��E with arbitrarily small error

for any environment E such that VðPÞ 	 domðEÞ. In order

to define such a translation we need the following renaming

operator.

Definition 13 Given a CRS C ¼ ðK;R; x0Þ, for kt 2 K and

k1 62 K we define the renaming operator Cfk1  ktg ¼ Cc

such that Cc ¼ ððK� fktgÞ [ fk1g;Rfk1  ktg; x00Þ,
where Rfk1  ktg substitutes any occurrence of kt with an

occurrence of k1 for any s 2 R and x00ðkÞ ¼ fx0ðkÞ if k 6¼
kt; x0ðktÞ if k ¼ k1g.

This operator produces a new CRS where any occur-

rence of a species is substituted with an occurrence of

another species previously not present.

Definition 14 (Translation into NRO-CRSs) Define the

mapping T by induction on syntax of formulae P:

TðoneÞ ¼ðfkoutg; fkoutg; ;; x0Þ withx0ðkoutÞ ¼ 1;

TðzeroÞ ¼ðfkoutg; fkoutg; ;; x0Þ withx0ðkoutÞ ¼ 0;

TðP1 þ P2Þ ¼SumðTðP1Þfko1
 koutg;

ko1
;TðP2Þfko2

 koutg; ko2
; koutÞ;

Tðk � PÞ ¼DivðMulðTðPÞfko  koutg;
ko; k1; koutÞfko0  koutgÞ; ko0 ; k2; koutÞ;

TðminðP1;P2Þ ¼MinðTðP1Þfko1
 koutg;

ko1
;TðP2Þfko2

 koutg; ko2
; koutÞ;

TððP1ÞD : P2Þ ¼

ConðTðP1Þfko1
 koutg; ko1

; TðP2Þfko2
 koutg;

ko2
;D; koutÞ; ifD ¼ p

ConEðTðP1Þfko1
 koutg; ko1

; TðP2Þfko2
 koutg;

ko2
;D; koutÞ; ifD ¼ pþ

Pm
i¼1 pi � ci

8>>><
>>>:

for m[ 1, k 2 Q[ 0, k1; k2 2 N such that k ¼ k1

k2
and for-

mulae P1;P2, which are assumed to not contain species

ko1
; ko2

.

Example 11 Consider the formula P1 ¼ ðoneÞ0:001�cþ0:2

ð4 � oneÞ þ ð2 � oneÞ0:4ð3 � oneÞ of Example 7, and an

environment E such that 0:000125�EðcÞ� 1 and suppose

EðcÞ � 800 2 N. We show how the translation defined in

Definition 14 produces a NRO-CRS C with output species

kout such that pkout ¼ ½½P1��E. Consider the following NRO-

CRSs C1;C2;C3;C4 defined as C1 ¼ ðfkc1
g; fkc1

g; fg; x00Þ
with x0ðkc1

Þ ¼ 1, C2 ¼ ðfkc2
g; fkc2

g; fg; x0Þ with

x0ðkc2
Þ ¼ 1, C3 ¼ ðfkc3

g; fkc3
g; fg; x0Þ with x0ðkc3

Þ ¼ 1,

and C4 ¼ ðfkc4
g; fkc4

g; fg; x0Þ with x0ðkc2
Þ ¼ 1. Then, we

have that :

Cc
1 ¼ConEðC1; kc1

;MulðC2; kc2
; 4; koutÞfko2

 koutg;
ko2

; 0:001 � cþ 0:2; kout1Þ
Cc

2 ¼ConðMulðC3; kc3
; 2; koutÞfko3

 koutg; ko3
;

MulðC4; kc4
; 3; koutÞfko4

 koutg; ko4
; 0:4; kout2Þ

are such that pkout1 ¼
ð0:001 � ½½c��Eþ0:2Þ; if y¼1

1�ð0:001 � ½½c��Eþ0:2Þ; if y¼4

0; otherwise

8<
: ,

and pkout2 ¼
0:4; if y¼2

0:6; if y¼3

0; otherwise

8<
: . Then, consider the CRS

C¼SumðCc
1fkt1 kout1

g;kt1 ; Cc
2fkt2 kout2

g; kt2 ;koutÞ and we

have pkout ¼½½P1��E with arbitrarily small error. The reac-

tions of C are shown below
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Mulon inputsfs1 : kC2
! 4ko1

; s2 : kC3
! 2ko2

;

s3 : kC4
! 3ko3

:

Cc
1

s4 : kenv !k kcat1 þ kcat2 ;

s5 : kcat1 þ kz ! k1

s6 : kcat2 þ ktot !k ;;
s7 : ktot þ kz ! k2

s8 : k1 þ ko1
! ko1

þ kout1 ;

s9 : k2 þ ko2
! ko2

þ kout1

8>>>>>>>><
>>>>>>>>:

Cc
2

s10 : kz1
!0:6 kr1

;

s11 : kz1
!0:4 kr2

s12 : kr1
þ ko3

;! kr1
þ kout2 ;

s13 : kr2
þ ko4

! kr2
þ kout2

8>>><
>>>:

Sum s14 : kout1 ! kout; s15 : kout2 ! koutf

for k� 1 and initial condition such that

x0ðkenvÞ ¼ EðcÞ � 800, x0ðktotÞ ¼ 800, x0ðkzÞ ¼ x0ðkz1
Þ ¼

x0ðkz2
Þ ¼ 1 ¼ x0ðkc1

Þ ¼ x0ðkc2
Þ ¼ x0ðkc3

Þ ¼ x0ðkc4
Þ ¼ 1,

and all other species initialized with 0 molecules.

Proposition 3 For any formula P we have that T(P) is a

NRO-CRS.

Proof The proof is by structural induction. The base cases

are T(zero) and T(one), which are NRO-CRSs by defini-

tion. Assuming TðP1Þ and TðP2Þ are NRO-CRNs then

application of operators of sum, Mul, Div, Min, Con and

ConE on these CRSs produces a NRO-CRNs by definition

of the operators. h

Given a formula P and an environment E such that

VðPÞ 	 domðEÞ, the following theorem guarantees the

soundness of T(P) with respect to ½½P��E. In order to prove

the soundness of our translation we consider the measure of

the multiplicative error between two pmfs f1 and f2 with

values in Nm, m[ 0 as emðf1; f2Þ ¼
maxn2Nm minðf1ðnÞ

f2ðnÞ ;
f2ðnÞ
f1ðnÞÞ.

Theorem 8 (Soundness) Given a formula P and kout,
unique output species of T(P), then, for an environment E

such that VðPÞ 	 domðEÞ, it holds that pTðPÞkout
¼ ½½P��E with

arbitrarily small error under multiplicative error measure.

The proof follows by structural induction.

Remark 3 A formula P is finite by definition, so Theo-

rem 8 is valid because the only production rule which can

introduce an error is ðP1ÞD : ðP2Þ in the case D 6¼ p0, and

we can always find reaction rates to make the total prob-

ability of error arbitrarily small. Note that, by using the

results of Soloveichik et al. (2008), it would also be pos-

sible to show that the total error can be kept arbitrarily

small, even if a formula is composed from an unbounded

number of production rules. This requires small modifica-

tions to the ConE operator following ideas in Soloveichik

et al. (2008).

Observe that compositional translation, as defined in

Definition 14, generally produces more compact CRNs

with respect to the direct translation in Theorem 3, and in

both cases the output is non-reacting, so the resulting CRN

can be used for composition. For a distribution with sup-

port J direct translation yields a CRN with 2|J| reactions,

whereas, for instance, the support of the sum pmf has the

cardinality of the Cartesian product of the supports of the

input pmfs.

6 Discussion

Our goal was to explore the capacity of CRNs to compute

with distributions. This is an important goal because, when

molecular interactions are in low number, as is common in

various experimental scenarios (Qian and Winfree 2014),

deterministic methods are not accurate, and stochasticity is

essential for cellular circuits. Moreover, there is a large

body of literature in biology where stochasticity has been

shown to be essential and not only a nuisance (Eldar and

Elowitz 2010). Our work is a step forward towards better

understanding of molecular computation. In this paper we

focused on error-free computation for distributions. It

would be interesting to understand and characterize what

would happen when relaxing this constraint. That is, if we

admit a probabilistically (arbitrarily) small error, does the

ability of CRNs to compute on distributions increase?

Another interesting topic to investigate is whether we can

relax the constraint that the output species are produced

monotonically. In fact, this is a constraint that is generally

not present in natural systems where species undergo

production and degradation reactions. More specifically,

we require that a CRN will reach a state where no reactions

can happen. In terms of sampling from the distribution, this

would require sampling an ensemble of cells since sam-

pling a single cell would yield a single state. Also, we

would like to address the problem if it is possible to

implement distributions in CRNs without leaders (species

being present with initial number of molecules equal to 1)

and without knowing the precise initial number of mole-

cules for each species. Our constructions, except for the

uniform distribution, crucially rely on these assumptions,

though may be challenging to obtain in technologies such

as DNA strand displacement (Soloveichik et al. 2010). As

a consequence, DNA implementation would become easier

if these constraints can be removed. However, it is worth

noting that, in a practical scenario, leaders can be thought

of as single genes or localized structures (Qian and Winfree
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2014), and there exist CRN techniques to produce given

concentrations independently of initial conditions (Shinar

and Feinberg 2010).
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