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Abstract

We explore the range of probabilistic behaviours that can be engineered with Chemical Reaction Networks (CRNs). We
give methods to “program” CRNs so that their steady state is chosen from some desired target distribution that has finite
support in N, with m > 1. Moreover, any distribution with countable infinite support can be approximated with arbitrarily
small error under the L' norm. We also give optimized schemes for special distributions, including the uniform distribution.
Finally, we formulate a calculus to compute on distributions that is complete for finite support distributions, and can be
compiled to a restricted class of CRNs that at steady state realize those distributions.

Keywords Stochastic chemical reaction networks - Discrete distributions - Quantitative reasoning

1 Introduction

Individual cells and viruses operate in a noisy environment
and molecular interactions are inherently stochastic. How
cells can tolerate and take advantage of noise (stochastic
fluctuations) is a question of primary importance. It has
been shown that noise has a functional role in cells (Eldar
and Elowitz 2010); indeed, some critical functions depend
on the stochastic fluctuations of molecular populations and
would be impossible in a deterministic setting. For
instance, noise is fundamental for probabilistic differenti-
ation of strategies in organisms, and is a key factor for
evolution and adaptation (Arkin et al. 1998). In Escher-
ichia coli, randomly and independently of external inputs, a
small sub-population of cells enters a non-growing state in
which they can elude the action of antibiotics that can only
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kill actively growing bacterial cells. Thus, when a popu-
lation of E. coli cells is treated with antibiotics, the per-
sisted cells survive by virtue of their quiescence before
resuming growth (Losick and Desplan 2008). This is an
example in which molecular systems compute by produc-
ing a distribution. In other cases cells need to shape noise
and compute on distributions instead of simply mean val-
ues. For example, in Schmiedel et al. (2015) the authors
show, both mathematically and experimentally, that
microRNA confers precision on the protein expression: it
shapes the noise of genes in a way that decreases the
intrinsic noise in protein expression, maintaining its
expected value almost constant. Thus, although funda-
mentally important, the mechanisms used by cells to
compute in a stochastic environment are not well
understood.

Chemical Reaction Networks (CRNs) with mass action
kinetics are a well studied formalism for modelling bio-
chemical systems, more recently also used as a formal
programming language (Chen et al. 2013). It has been
shown that any CRN can be physically implemented by a
corresponding DNA strand displacement circuit in a well-
mixed solution (Soloveichik et al. 2010). DNA-based cir-
cuits thus have the potential to operate inside cells and
control their activity. Winfree and Qian have also shown
that CRNs can be implemented on the surface of a DNA
nanostructure (Qian and Winfree 2014), enabling localized
computation and engineering biochemical systems where
the molecular interactions occur between few components.
When the number of interacting entities is small, the
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stochastic fluctuations intrinsic in molecular interactions
play a predominant role in the time evolution of the system.
As a consequence, “programming” a CRN to provide a
particular probabilistic response for a subset of species, for
example in response to environmental conditions, is
important for engineering complex biochemical nano-de-
vices and randomized algorithms. In this paper, we explore
the capacity of CRNs to “exactly program” discrete
probability distributions. That is, we give methods such
that the steady state distribution of a CRN can be chosen
from some desired target distribution. We aim to charac-
terize the probabilistic behaviour that can be obtained,
exploring both the capabilities of CRNs for producing
distributions and for computing on distributions by com-
posing them.

Contributions We show that at steady state CRNs are
able to compute any distribution with finite support in N,
with m>1. We propose an algorithm to systematically
“program” a CRN so that at steady state it produces any
given finite support distribution. Moreover, any distribution
with countable infinite support can be approximated with
arbitrarily small error under the L' norm. The resulting
network has a number of reactions linear in the dimension
of the support of the distribution and the output is produced
monotonically allowing composition. Since distributions
with large support can result in unwieldy networks, we also
give optimised networks for special distributions, including
a novel scheme for the uniform distribution. We formulate
a calculus that is complete for finite support distributions,
which can be compiled to a restricted class of CRNs that at
steady state compute those distributions. The resulting
CRNs are generally more compact with respect to the ones
derived from direct approach. The calculus is equivalent to
the baricentric algebra presented in Mardare et al. (2016),
and allows for modelling of external influences on the
species. Our results are of interest for a variety of scenarios
in systems and synthetic biology. For example, they can be
used to program a biased stochastic coin or a uniform
distribution, thus enabling implementation of randomized
algorithms and protocols in CRNs.

Preliminary version of this work appeared as Cardelli
et al. (2016a). This paper includes an extended description
with illustrative examples and proofs of the results.

Related work It has been shown that CRNs with
stochastic semantics are Turing complete, up to an arbi-
trarily small error (Soloveichik et al. 2008). If we assume
error-free computation, their computational power decrea-
ses: they can decide the class of the semi-linear predicates
(Angluin et al. 2007) and compute semi-linear functions
(Chen et al. 2014). A first attempt to model distributions
with CRNs can be found in Fett et al. (2007), where the
problem of producing a single distribution is studied.
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However, their circuits are approximated and cannot be
composed to compute operations on distributions.

2 Chemical reaction networks

A chemical reaction network (CRN) (A,R) is a pair of
finite sets, where A is the set of chemical species, |A|
denotes its size, and R is a set of reactions. A reaction
TER is a triple T = (r;,pe, k), where r, € NI s the
source complex, p, € N/l is the product complex and k; €
R < o is the coefficient associated to the rate of the reaction,
where we assume k; = 1 if not specified; r; and p, repre-
sent the stoichiometry of reactants and products. Given a
reaction 7; = ([1,0,1],]0,2,0],k;) we often refer to it as
Ty A+ A3 —f 22, The net change (or state change)
associated to t is defined by v, = p; — 1.

We assume that the system is well stirred, that is, the
probability of the next reaction occurring between two
molecules is independent of the location of those mole-
cules, at fixed volume V and temperature. Under these
assumptions a configuration or state of the system x € Nl
is given by the number of molecules of each species.

A chemical reaction system (CRS) C = (A,R,xp) is a
tuple where (A,R) is a CRN and xj € NI represents its
initial condition.

2.1 Stochastic semantics

The stochastic semantics of a CRS is given in terms of a
continuous time Markov chain (CTMC). Here, we intro-
duce the semantics according to the representation of
Markov processes proposed by Ethier and Kurtz (2009,
Theorem 4.1 Chapter 6). Such representation is equivalent
to the classical model described by the Chemical Master
Equation, but much more compact. It allows us to represent
the CTMC in terms of stochastic equations, which have a
similar structure to the deterministic rate equations. We
illustrate the semantics with the help of Example 1. Below
we present Poisson processes, as they will be used in the
semantics and in the paper. A building block of the
mathematical models we use in the paper is a counting
process. Intuitively, a counting process Y is a process such
that Y(¢) counts the number of times that a particular phe-
nomenon has been observed by time .

Definition 1  (Counting process) Y is a counting process if
Y(0) = 0 and Y is constant except for jumps of +1.

Definition 2 (Poisson process) A counting process Y is a
Poisson process if:
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— Number of observations in disjoint time intervals are
independent random variables, that is, Y(#;)— Y (#—1),
k € N, are independent random variables.

— The distribution of Y(r+ Ar) — Y(¢) is independent of
1.

Theorem 1 (Anderson and Kurtz 2015) If Y is a Poisson
process, then there exists a constant A > 0 such that for
ty >t € R>9 and k € N it holds that

k
v =k = A0

That is, Y(1;) —
)L(l‘z — l‘l).

If A= 1, we call Y a unit Poisson process.

Prob(Y (1) — Mez=t)

Y (1) is Poisson distributed with parameter

Example 1
reactions

Consider the CRN described by the following

T A+ A —k Mty i+ A —k A+ Ao

and let X(0) € N? be the initial condition. Then, the state
of the system at time ¢ >0 will be given by X(0) plus the
number of times that each reaction have fired between
[0, 7] multiplied by the respective state change vector. That
is,

1 -1
X(t) =X(0) + (_1 )Rfl(z) + ( | )sz(t)
where R, (t),R,,(t) are counting processes that count the
number of times that the particular reaction has fired until
time #. We now assume that R, are independent, unit
Poisson processes that depend on the propensity rate of 1.

More precisely, = Y. (fyo(X where
fo ))ds) is a unit P01sson process W1th intensity
Jo (X ds Intuitively, [;o(X(s))ds gives the time

1nterva1 in which counting events for the unit Poisson
process. Under this modelling assumptions it holds that
(Ethier and Kurtz 2009)

Prob(Y, ( /O . (X(s))ds) v, ( /O e (X(s)ds)

> 0|Vs € [0,¢,X(s)) = a.(X(¢))At.

That is, the probability that a reaction t happens in the next
At, at the first order, is given by the propensity rate of 7 at
time ¢ multiplied by A4f, exactly as in the classical
stochastic representation (Van Kampen 1992) of CRNs. At
this point, for our model, we can write its stochastic model
as

X(1) =Xx(0)

- <_11 > Y., <kﬂ /OIXM ()X, (S)ds>
+ (-1 1 ) Y., (kfz /0 txil ()X, (5) ds)

Theorem 2 below shows that the forward equation asso-
ciated with the Markov process described in the previous
stochastic equation is exactly the Chemical Master
Equation (CME).

Definition 3 Given a CRS C =
stochastic semantics at time ¢ as

—xo—&—ZnT

> ( / (X (s )ds)) (1)

where Y, are unit Poisson processes, independent of each
other.

(A,R,xp), we define its

Theorem 2  (Ethier and Kurtz 2009) Let C = (A, R, xo) be
a CRS and X€ be the stochastic process as defined in
Eq. (1). Define Prob(X¢(t) = x|X€(0) = xo) = P(¢)(x).
Assume that, for each t € R and t € Rsg, X¢(t) <oo,
then

dPC Z PC

TER

)(x =)o (X (1)) = PE(1) (x)oe (X (1)),

(2)

PC(1)(x) represents the transient evolution of X¢, and
can be calculated exactly by solving directly the Chemical
Master Equation or by approximation techniques (Cardelli
et al. 2016b, c; Bortolussi et al. 2016).

Definition 4 The steady state distribution (or limit distri-
bution) of X is defined as n¢ = lim, ., P€(z).

When clear from the context, we omit the superscript
indicating the CRN and simply write 7 instead of n€. =
calculates the percentage of time, in the long-run, that
X spends in each state x € S. If S is finite, then the above
limit distribution always exists and is unique (Kwiat-
kowska et al. 2007). In this paper we focus on discrete
distributions, and will sometimes conflate the term distri-
bution with probability mass function, defined next.

Definition 5 Suppose that M : § — R™ with m > 0 is a
discrete random variable defined on a countable sample
space S. Then the probability mass function (pmf) f:

— [0, 1] for M is defined as
f(x) = Prob(s € S| M(s) = x).

For a pmf z : N — [0, 1] we call J ={y € N"|n(y) #0}
the support of 7. A pmf is always associated to a discrete
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random variable whose distribution is described by the
pmf. Sometimes, when we refer to a pmf, we imply the
associated random variable. Given two pmfs f; and f, with
values in N, m > 0, we define the L! norm (or distance)
between them as d;(fi.f2) =>_,cnn ([fi(n) —f2(n)|). Note
that, as fi,f> are pmfs, then d;(f1,f2)<2. It is worth
stressing that, given the CTMC X, for each 1 € R>¢, X() is
a random variable defined on a countable state space. As a
consequence, its distribution is given by a pmf. Likewise,
the limit distribution of a CTMC, if it exists, is a pmf.

(A,R) and A€ A, we define
n(x) as the probability that for

Definition 6 Given C =
(k) = D fresi()=k}

t — 00, in X€, there are k molecules of 1.

7, is a pmf representing the steady state distribution of
species /.

3 On computing finite support distributions
with CRNs

We now show that, for a pmf with finite support in N, we
can always build a CRS such that, at steady state (i.e. for
t — o0) the random variable representing the molecular
population of a given species in the CRN is equal to that
distribution. Such result allows us to approximate any
distribution with countable infinite support with arbitrarily
small error under the L' norm. The result is then gener-
alised to distributions with domain in N, with m > 1. The
approximation is exact in case of finite support.

3.1 Programming pmfs

Definition 7 Given f : N — [0, 1] with finite support J =

(21, - 2) such that S, f(z;) = 1, we define the CRS
Cr = (4, R, x¢) as follows. Cy is composed of 21J] reactions
and 2|J| + 2 species. For any z; € J we have two species
iy A € A such that xo(4;) = z; and xo(4;;) = 0. Then, we
consider a species 4, € A such that xo(4;) = 1, and the
species A,,; € A, which represents the output of the net-
work and such that xo(4,,) = 0. For every z; € J, R has the
following two  reactions: 1A, =@ 2 and
Tin A+ Aii = how + i

Example 2 Consider the probability mass function f :

1
= ify=2
60 Y
1 g

N — [0, 1] defined as f(y) = { 3’ ify=>5
1
0 otherwise

Let A = {11,127 A3, )\-z, ),1’1, 12’2, 13‘3, iom}, then we build
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the CRS C = (A, R, xy) following Definition 7, where R is
given by the following set of reactions:

/Iz —>é l]}];
A+ —! A1+ Lo
I3+ 233 ="' 233+ dour-

, 1 1,
Ay =3 Aoy Ap =2 4335

) ) 1 .
Jo 4 Ao = Jop + lows

The initial condition xg is Xo(Zow) = x0(411) =

o(4
xO(}G 3) = 0 X()(j. ) = 2 )Co< ) ; xo(/13)

(422)
5 =
xo(4;) = 1. Theorem 3 ensures 7;,, = f.

10;

Theorem 3  Given a pmf f : N — [0, 1] with finite support
J, the CRS Cy as defined in Definition 7 is such that

Cr :f

Aous
Proof Let J = (z1,..,2) be the support of f, and I/l its
size. Suppose lJI is finite, then the set of reachable states
from xj is finite by construction and the limit distribution of
X%, the induced CTMC, exists. By construction, in the
initial state xo only reactions of type 7;; can fire, and the
probability that a specific 1;; fires first is exactly:

afl,<xo> f@) -1
S o (v0) S ()1
f@)  _f@)

= =f(z

ZlJ“f(Z/) 1 f( )

Observe that the firing of the first reaction uniquely defines
the limit distribution of X<, because A, is consumed
immediately and only reaction t;, can fire, with no race
condition, until 4; are consumed. This implies that at steady
state A,,, Will be equal to xo(4;), and this happens with
probability f(xo(4:)). Since xo(4;) =z for i € [1,]J]], we

have n? =f. O
Then, we can state the following corollary of

Theorem 3.

Corollary 1 Given a pmf f:N —[0,1] with count-

able support J, we can always find a finite CRS Cy such

C ; L
that 7’ =/ with arbitrarily small error under the L

norm.

Proof Let J={z,..
infinite, that is, |J| — oco. Then, we can always consider an
arbitrarily large but finite number of points in the support,
such that the probability mass lost is arbitrarily small, and
applying Definition 7 on this finite subset of the support we
have the result.

In order to prove the result consider the function f” with
support J' = {zy,...,2}, kK € N, such that f(z;) =f'(z),
for all i € N <. Consider the series Y .-, f(n). This is an
absolute convergent series by definition of pmf. Then, we

-2y}~ Suppose J is (countably)
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have that lim; . f(i{) =0 and, for any e >0, we can
choose some x, € N, such that:

k 00

. . €
k> |y F0) =D fOl<5
i=1 i1
This implies that for k > K, given f{ = S_+_, f'(i) we have,
di(fl.f) <e. |

The following remark shows that the need for precisely
tuning the value of reaction rates in Theorem 3 can be
dropped by introducing some auxiliary species.

Remark 1 In practice, tuning the rates of a reaction can be
difficult or impossible. However, it is possible to modify
the CRS derived using Definition 7 in such a way the
probability value is not encoded in the rates, and we just
require that all reactions have the same rates. We can do
that by using some auxiliary species
A, = {)%.],icz,...,/ICW}. Then, the reactions 7;; for i €
[1,J] become i : A, + Ao, —* A;;, for k>0, instead of
Tip A — i) /Jij» as in the original definition. The initial
condition of 4, is xo(4,) =f(y:) - L, where L € N is such
that for j € [1,|J]] and J = {z1,...,z);} we have that f(z) -
L is a natural number, assuming all the f(z;) are rationals.

Remark 2 1In biological circuits the probability distribu-
tion of a species may depend on some external conditions.
For example, the lambda Bacteriofage decides to lyse or
not to lyse with a probabilistic distribution based also on
environmental conditions (Arkin et al. 1998). Program-
ming similar behaviour is possible by extension of Theo-
rem 3. For instance, suppose, we want to program a switch
that with rate 50 4+ Com goes to state O;, and with rate
5000 goes to a different state O,, where Com is an external
input. To program this logic we can use the following
reactions: Ty : A + e —K Ao, and Ty A+
Jey =K1 Jo,, where Lo, and 1o, model the two logic states,
initialized at 0. The initial condition xy is such that
x0(4;) = 1, x9(4¢,) = 50 and xo(4.,) = 5000. Then, we add
the following reaction Com —* J,. It is easy to show that
if k, > k; then we have the desired probabilistic behaviour
for any initial value of Com € N. This may be of interest
also for practical scenarios in synthetic biology, where for
instance the behaviour of synthetic bacteria needs to be
externally controlled (Anderson et al. 2006); and, if each
bacteria is endowed with a similar logic, then, by tuning
Com, at the population level, it is possible to control the
fraction of bacteria that perform this task.

In the next theorem we generalize to the multidimen-
sional case.

Theorem 4 Given f: N" — [0,1] with m>1 such that
Y iennf(i) =1, then there exists a CRS C = (A,R,xp)

135
such that the joint limit distribution of (Aout, »
Joutys -+ -5 Jour,) € A approximates f with arbitrarily small

error under the L' distance. The approximation is exact if
the support of f is finite.

To prove this theorem we can derive a CRS similar to
that in the uni-dimensional case. The firing of the first
reaction can be used to probabilistically determine the
value at steady state of the m output species, using some
auxiliary species.

Example 3 Consider the following probability mass
function

lfyl :3andy2:1

ify; =3andy, =2
fOi,y) = I V2

ify=1andy, =5

O N = W= | =

otherwise

we present the CRS C = (A4, R,xp) that according to its
stochastic semantics, for Ao, , Ao, € A yields the steady-
state distribution 7, ;,,,, joint limit distribution of
Joutys Aoury»  €Xactly equal to f. Let A= {1, s,
Aoy M5 M2221, 222, 431, 232%0un s #our,} @and R given by

the following set of reactions:

Ty i Ay 6 Aoy T2 A, -3 by T3 3 A
T4 )\,1’1 + j.a —>1 )va + )voutl;
T5 : )»172 + /la —>1 )va + )voutz;
Tg - )»2,1 + A —! Ay + )voun;
T7 : )»2}2 + /lb —>1 )vb + )voutz;
T8 © )»371 + /16 —>1 ;Lc + ;»oull;

T9g : ;y3,2 + ic _’1 /lc + )Louz‘g;

The initial condition xq is such that:
X()()uz) = 1,

xO()vL]) = 3; X()(j.],z) = 1; xO(/quJ) = 3;
x0(A22) =25 x0(43,1) = 15 x0(432) = 5;

and all other species mapped to zero. The set of reachable
states from xg is finite so the limit distribution exists. The
firing of the first reaction uniquely determines the steady
state solution. xo(4; 1) and xo(4;2) for i € [1,3] are exactly
the value of A,,, and 4,,, at steady state if the first reaction
to fire is t; this happens with probability
f(x0(Zi1),x0(4i2)). Therefore, we have that, at steady state,
the joint distribution of A,,, and A, equals f.

@ Springer



136

L. Cardelli et al.

3.2 Special distributions

For a given pmf the number of reactions of the CRS
derived from Definition 7 is linear in the dimension of its
support. As a consequence, if the support is large then the
CRSs derived using Theorems 3 and 4 can be unwieldy. In
the following we show three optimised CRSs to calculate
the Poisson, binomial and uniform distributions. These
CRNs are compact and applicable in many practical sce-
narios. However, using Definition 7 the output is always
produced monotonically. In the circuits below this does not
happen, but, on the other hand, the gain in compactness is
substantial. The first two circuits have been derived from
the literature, while the CRN for the uniform distribution is
new.

3.2.1 Poisson distribution

The main result of Anderson et al. (2010) guarantees that
all the CRNs that respect some conditions (weakly rever-
sible, deficiency zero and irreducible state space, see
Anderson et al. 2010) have a distribution given by the
product of Poisson distributions. As a particular case, we
consider the following CRS composed of only one species
/. and the following two reactions t; : ) =% 1; 15 : A =k
(). Then, at steady state, A has a Poisson distribution with
expected value ’,z—;

3.2.2 Binomial distribution

We consider the network introduced in Anderson et al.
(2010). The CRS is composed of two species, 4; and 1,,
with initial condition xq such that xo(4;) + xo(4) = K and
the following set of reactions: 7| : A; —% Jy;1p 1 Jp =%
A1- As shown in Anderson et al. (2010), 4; and 1, at steady
state have a binomial distribution such that: 7, (y) =

Ber (1 —e)™ and m,(y) = E)er’ (1 =)™

3.2.3 Uniform distribution

The following CRS computes the uniform distribution over
the sum of the initial number of molecules in the system,
independently of the initial value of each species. It has
species 4, and /; and reactions:

T - ;Vl —>k )\.2; T )»2 —>k )»1;

‘E3:)~1+)»2—>k11+/11; T4:)»1+12—>k/12+/12

For k > 0, 7; and 7, implement the binomial distribution.
These are combined with 73 and t4, which implement a
Direct Competition (DC) system (Cardelli and Csikasz-
Nagy 2012). DC has a bimodal limit distribution in 0 and in
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K, where xo(4;) +x0(42) = K, with xo initial condition.
This network, surprisingly, according to the next theorem,
at steady state produces a distribution which varies uni-
formly between 0 and K.

Theorem 5 Let xo(41) +x0(42) = K € N. Then, the CRS
described above has the following steady state distribution
for Ay and 7;:

1

, ifye[0,K
m ) =m0 = kv Y EOKL
0, otherwise

Proof We consider a general initial condition x; such that
xo(A)=K—-M and xo(A) =M for 0<M<K and
K, M € N. Because any reaction has exactly 2 reagents and
2 products, we have the invariant that for any configuration
x reachable from xj it holds that x(1;) + x(4,) = K. Fig-
ure 1 plots the CTMC semantics of the system.

For any fixed K the set of reachable states from any
initial condition in the induced CTMC is finite (exactly
K states are reachable from any initial condition) and
irreducible. Therefore, the steady state solution exists, is
unique and independent of the initial conditions. To find
this limit distribution we can calculate Q, the infinitesimal
generator of the CTMC, and then solve the linear equations
system nQ =0, with the constraint that ;o m =1,
where 7; is the ith component of the vector 7, as shown in
Kwiatkowska et al. (2007). Because the CTMC we are
considering is irreducible, this is equivalent to solving the
balance equations with the same constraint. The resulting n
is the steady state distribution of the system.

We consider 3 cases, where (K —j,j) for j € [0,K]
represents the state of the system in terms of molecules of
)»1 and /12.

— Case j = 0. For the state (K, 0), whose limit distribu-
tion is defined as n(K,0), we have the following
balance equation:

— n(K,0)Kk + n(K — 1, )[(K — 1)k + k] = 0=
n(K,0) =n(K —1,1).

— Casej € [l,K — 1]. In Fig. 1 we see that the states and
the rates follow a precise pattern: every state is directly
connected with only two states and for any transition
the rates depend on two reactions, therefore we can
consider the balance equations for a general state
(K —j,j) for j€[l,K — 1] (for the sake of a lighter
notation instead of n(K — j,j) we write n/):
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Fig. 1 The figure shows the 2(N-1)k 2k+2(N-2)k (N-1)k+k
CTMC induced by the CRS
implementing the uniform
distribution for initial condition
Xo such that
xo(A1) +x0(A2) =K
(N-1)k+k (N-2)2k+2k 2(N-1)k

K+ 1 —j+ (K+1 =)= 1] = n/[2(K - j)j
+ji+K—j+ 7+ 1+ (K—j—-1)({+1)]=0
=
7K — P+ )] = 72K — 27 + K]
+ WK+ K= =] =0

It is easy to verify that if 7! = 7/ = 7/*! then the
equation is proved.

— Case j = K. The case for the state (0, K) is similar to
the case (K, 0).

We have shown that each reachable state has equal prob-
ability at steady state for any possible initial condition.

SKEi=1 and 7,(y) =
D eshy i)y 7' for y >0, we have that for both A; and 2,

Therefore, because

K+1’
0, otherwise

i (y) = 1, (y) = if y € [0, K]

4 Calculus of limit distributions of CRNs

In the previous section we have shown that CRNs are able
to program any pmf on N. We now define a calculus to
compose and compute on pmfs. We show it is complete
with respect to finite support pmfs on N. The calculus we
present is a left-invariant baricentric algebra (Mardare
et al. 2016). Then, we define a translation of this calculus
into a restricted class of CRNs. We prove the soundness of
such a translation, which thus yields an abstract calculus of
limit distributions of CRNs. For simplicity, in what follows
we consider only pmfs with support in N, but the results
can be generalised to the multi-dimensional case.

Definition 8 (Syntax) The syntax of formulae of our cal-
culus is given by

P:= (P+ P)|min(P,P)|k-P|(P),
D:=plp-c¢;+D

: P|one| zero

where k € Q>o, p € Qo) are rational and V = {cy,.. .,
¢y} is a set of variables with values in N.

A formula P denotes a pmf that can be obtained as a
sum, minimum, multiplication by a rational, or convex
combination of pmfs one and zero. Given a formula P,
variables V = {cy,...,¢,}, called environmental inputs,
model the influence of external factors on the probability
distributions of the system. V(P) represents the variables in
P. An environment E:V — Q) is a partial function
which maps each input ¢; to its valuation normalized to
[0, 1]. Given a formula P and an environment E, where
V(P) C dom(E), with dom(E) domain of E, we define its
semantics, [P]g, as a pmf (the empty environment is
denoted as ()). D expresses a summation of valuations of
inputs ¢; weighted by rational probabilities p, which eval-
uates to a rational [D]. for a given environment. We
require that, for any D, the sum of p coefficients in D is in
[0, 1]. This ensures that 0 <[D], <1. The semantics is
defined inductively as follows, where the operations on
pmfs are defined in Sect. 4.1.

Definition 9 (Semantics) Given formulae P, P;, P, and
an environment E, such that V(P)UV(P;)UV(P,)
C dom(E), we define

[onely = Ttone  [zero]p = Mzero

[P +P2]]E = [[Pl]]E+ [[PZ]]E

[min(Py, P2)]g = min([P1] g, [P2] )

- Pl =)

[(P1)p = (P2)]g
HP]]E =P
[p-ci+Dlp=p-E(c)+
where

17 lfy =1 17
none(y) = { . 7nzer0(y) = {

0, otherwise 0, otherwise

k
fork = —andk, k, € N
ko

Iy (IP2]g)

2

={Ple)w

(ID]g)

ify=0

To illustrate the calculus, consider the Bernoulli distri-
bution  with  parameter p € Qp;. We
bern” = (one), : zero, where [bern’],(y) = {pify = ;1 —

have
pify = 0;0 otherwise} .

The binomial distribution can be obtained as a sum of
n independent Bernoulli distributions of the same param-
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eter. Given a random variable with a binomial distribution
with parameters (n, p), if n is sufficiently large and p suf-
ficiently small then this approximates a Poisson distribu-
tion with parameter n - p.

4.1 Operations on distributions

In this section, we define a set of operations on pmfs
needed to define the semantics of the calculus. We con-
clude the section by showing that these operations are
sufficient to represent pmfs with finite support in N.

Definition 10 Let 7y : N — [0, 1], mp : N — [0, 1] be two
pmfs. Assume p € Q. y €N, k; € N and ky € N .,
then we define the following operations on pmfs:

— The sum or convolution of ©; and 7, is defined as

(m +m)(y) = >

(i) ENXN 5.t yity;=y

T (yi)ma (y))-

— The minimum of 7; and n, is defined as
min(my, m2)(y)

= > 1 (i) ma (3)-
(i:3) ENXN s.t. min(y;.y;) =y

— The multiplication of 7; by the constant & is defined as

y e Y
(=), if —e N

(k) (y) = 4 (kl) ky
0, otherwise

— The division of 7; by the constant &, is defined as

T
g0= > =bw.
2 yieNs.t. y= LVf/kZJ

— The convex combination of m; and 7, for y € N, is
defined as

(1), : (m))(y) = pmi(y) + (1 = p)ma(y).

Example 4 Consider the following pmf 7; : N — [0, 1]

1

-, if yy =3

6 1y
my) =145 -

- fyr =0

6; I y;

0, otherwise

and the following pmf 7, : N — [0, 1]
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1

= if y, =5

) ) 1T y2
m(y2) = 1 ,

= fy,=1

) ; 1T y2

0, otherwise

Then the sum of 7n; and 7, is:

%, ify=28
%, ify=>5
(m +m)(y) = %7 ify—4
15—27 ify=1
0, otherwise

Example 5 Consider the pmfs n; and m, of Example 4
then

1
— ify=3
12’ Iy
1
. —, ify=1
min(my, ) (y) =< 12 nY
5
- ify=20
6’ iy
0, otherwise

Example 6 Consider the pmf 7, of Example 4, then

1
— if y=10
2’ iy
=<1
27'[2(_)7) 5, if y = 2
0, otherwise

Example 7 Consider the following formula
Py = (one)ggo1.c102 (4 0one) +(2-one), - (3 - one),

with set of environmental variables V = {c} and an envi-
roment E such that V(Py) C dom(E). Then, according to
Definition 10 we have that

(0.001 - [c], +0.2)-0.4, ify=3
(0.001 - [c] +0.2) - 0.6, ify=4
[Pi]g(y) = ¢ (1 =(0.001-[c]p+02))-04, ify=6
(1 -1(0.001-[c]p+0.2))-06, ify=7
0, otherwise

The convex combination operator is the only one that is
not closed with respect to pmfs whose support is a single
point. Lemma 1 shows the associativity of the convex
distribution.



Programming discrete distributions with chemical reaction networks 139
Lemma 1 Given probability mass functions ((7T1>,, cm)(y) = pmi(y) + (1 —p)mi (v)
7y : N — [0,1], p1,p2,p3,p4 €[0,1] and k € Q >y, then 1= p)mb) = 1)
the following equations hold: - p)m\y) =mly
O

= k((m), : m) = (kmy),, : (k7o)

- ((m),, 1m),, :m3=(m),, : (m2),, : m3) iff p3 = P12
and 7= (}:ZI;PZ

- (ﬂ])p LT = (7'[2)]_,7 |

- (m)p T =Ty

Proof We need to prove each statement.
Case k((m1),: m) = (km), : (km2).
For y € N we have that

k((m1), : m2)(¥)

- >

yi€Ns.t.|kyi ] =y

- >

yi€Ns.t. |kyi]=y

S

vieN s.t. [ky; |=y

S

vieN s.t. |kyi|=y
S ()
vieNs.t. |ky;|=y
= (km1), : (km2))(y)

Case ((711)191 : 7'52)172 (M3 = (m)p3 : ((7:2)174 ‘) iff
p3=pip> and ps = %
For y € N we have that

(pmi(yi) + (1 = p)(ma(yi)))
(pnl()’i))
(1 =p)(ma(yi))

(1 (vi)) + (1 = p)-

((m1p, M), 1 m3)(y)

=pa(pimi(y) + (1 = p1)ma(y)) + (1 — p2)m3(y)
(M1, © (M2p, : 73))(¥)

=p3mi(y) + (1 = p3)(pama(y) + (1 — pa)m3(y))

These are equal if

pip2 =p3

P4 — P3ps = P2 — Pip2

1—py=(1-p3)(1 —ps)

and these conditions are satisfied if and only if p3 = pip»
and py = %.

Case (m1),:m = (m),_, : m.

For y € N by Definition 10 it holds that

((m), : @) () =pmi(y) + (1 = p)m2(y)
=1 =p)m(y) +pmi(y) = ((m2);_, : 1) ()

Case (77:1)[, T =T
For y € N by Definition 10 it holds that

Having formally defined all the operations on pmfs, we
can finally state the following proposition guaranteeing that
the semantics of any formula of the calculus is a pmf.

Proposition 1  Given P, a formula of the calculus defined
in Definition 8, and an environment E such that
V(P) C dom(E), then [P] is a pmf.

Proof The proof is by structural induction on the structure
of P with basic cases [one]; = Tope and [zero]p = mzero,
which are pmfs by definition for any E. O

The following theorem shows that our calculus is
complete with respect to finite support distributions.

Theorem 6 For any pmf f : N — [0, 1] with finite support
there exists a formula P such that [P]y, =f.

Proof Given a pmf f : N — [0, 1] with finite support J =
(z1,--,2) we can define P = (z-one) ) ((z2-
one) s ¢ (.. ((zi-one) s :

L s ... ((zn - 0ne))))).
o UG

Then, [P], = f. O

Proof of Theorem 6 relies only on a subset of the
operators, but the other operators are useful for composing
previously defined pmfs.

5 CRN implementation

We show how the operators of the calculus can be realized
by operators on CRSs. The resulting CRSs produce the
required distributions at steady state, that is, in terms of the
steady state distribution of the induced CTMC. Thus, we
need to consider a restricted class of CRNs that always
stabilize and that can be incrementally composed. The key
idea is that each such CRN has output species that cannot
act as a reactant in any reaction, and hence the counts of
those species increase monotonically. This implies that the
optimized CRSs shown in Sect. 3.2 cannot be used
compositionally.

! Note that this is a stricter requirement than those in (Chen et al.
2014), where output species are produced monotonically, but they are
allowed to act as catalysts in some reactions. We cannot allow that
because catalyst species influence the value of the propensity rate of a
reaction and so the probability that it fires.
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5.1 Non-reacting output CRSs (NRO-CRSs)

Since in the calculus presented in Definition 8 we consider
only finite support pmfs, in this section we are limited to
finite state CTMCs. This is important because some results
valid for finite state CTMCs are not valid in infinite state
spaces. Moreover, any pmf with infinite support on natural
numbers can always be approximated under the L' norm
(see Corollary 1).

Given a CRS C = (4,R,x,), we call the non-reacting
species of C the subset of species A, C A such that given
Ar € A, there does not exist T € R such that rj' > 0, where
r; is the component of the source complex of the reaction
7 relative to /,, that is, 4, is not a reactant in any reaction.
Given C we also define a subset of species, 4, C A, as the
output species of C. Output species are those whose limit
distribution is of interest. In general, they may or may not
be non-reacting species; they depend on the observer and
on what he/she is interested in observing.

Definition 11 A non-reacting output CRS (NRO-CRS) is
a tuple C = (A, 4,,R, xo), where A, C A are the output
species of C such that A, C A,, where A, are the non-
reacting species of C.

NRO-CRNs are CRSs in which the output species are
produced monotonically and cannot act as a reactant in any
reaction. A consequence of Theorem 3 is the following
lemma, which shows that this class of CRNs can approx-
imate any pmf with support on natural numbers, up to an
arbitrarily small error.

Lemma 2 For any probability mass function f: N" —
[0,1] there exists a NRO-CRS such that the joint limit
distribution of its output species approximates f with
arbitrarily small error under the L' norm. The approxi-
mation is exact if the support of f is finite.

Proof This lemma is a consequence of Theorems 3 and 4.
In fact, by construction, all CRSs used in those theorems
are non-reacting output. O

5.1.1 NRO-CRS operators

A NRO-CRS operator is a NRO-CRS such that, given as
input the output of certain NRO-CRSs, it produces as
output a (set of) species that at steady state implement a
given operation. We define the following NRO-CRS
operators and show their correctness.

Definition 12 Let C; = (/11, Aol’Rl,xO]) and C, =
(A3, Aoy, Ray x0,) be NRO-CRSs such that A; N A, = 0.
Then, for Joy € Ao,y Aoy € Aoys {Aouts Ay Ary s
I} N (A1 UA) =0, k€ N,p €0, 1], we define the fol-
lowing NRO-CRS operators:
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Sum(C1, Ao,y Cay 2oy out)
= (A1 U A U { Ao}, {Aou}, R1 URU
{;Lol - /lour’ }~oz - /Ioul}ax())
Min(Cy, Ao,y Cay 2oys Aout)
= (AU Ay U{dour}, {Aour }, R1 U RU
{Zo; + 2oy = Zour}sX0)
Mul(Cy, Ao, s ks Zout)
= (/11 U {;Louz}y {)-z)ut}>R1U

Jot = Dout -+ F Jou ,.X())
———
k times

DiV(C] 5 ;L'()] 5 k, A«()uf)
= (Al ) {;Lout}a {)vout}aRIU

Doy + Aoy = Aour p5%0)
Con(Cy, Aors C2y 20ys D, /lout)
= (AU Ay UL, s Arys Aour b {Aous }» R1 U RpU
{0e =P Qs 2y =P Dy,

)‘01 + j~r1 - ;Lrl + /’Louta /101 + )er - j-rz + j-out}a-xO)

xo, () ifie A

where xo(1) = szl(/l) llffx)l e_ /)12
L= A,

0 otherwise

Theorem 7 Let Cy = (A, Ay, R1,%0,) and Cy = (Ay,
Aoy, Ra, x0,) be NRO-CRSs such that Ay N Ay = (). Then,
Jor Lo, € Ap,y Ao, € Avyy Aows &€ A1 U A, k € Nyp € ]0,1]

we have:

Sum(Cy A,/lnl <,C2~,/102 eout) C C
et =, T T,
Min(C,20,,Casl0y y/out) . G
T o =mn\w;, ",
Mul(C\ 20, ks ou
T, (Codoy ko) _ g Co
out o,
Cy
Div(Cy oy o)
TCAW’ - k

Con(C1,20,,C2s 0y Psleou
‘ (Cry20yCas 20y P r): (TEQ) - &2
out 2oy 0y

The proof of Theorem 7 is not trivial, and is given in the
next subsection. The key difficulties lie in the fact that we
need to compose stochastic processes and show that the
resulting process has the required properties.

Example 8 We consider the pmfs 7, and 7, of Example 4.
Using the results of Theorem 3 we build the CRSs C; and
C, such that 4, and A,,,, unique output species of C; and
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C, respectively, admit as steady state distribution exactly Je =03 A 2 =07 A
4 1 "z 2
m and 1. Cp = ({4, 41,411, 4 Ao, }y R, xp) has the ) , )
1 X 2 1' ({ IMEQ SR N E) 01}a { m}a ) 0) ,{rl + )L(,l — A + Aours )‘rz + )~02 — L + ioul
following reactions
with  initial condition xo such that xo(4;) =1,

1 ) 3 1 9
e =5 s A =5 0 A 4 A = A o

where () is the empty set and x, is such that:
)Co(il) = 3, XQ(;»Z) = 1, )Co(il_l) = O, )C()(/lol) =0.
The CRS C; has the following reactions

1 1
iz/ —2 )Ll’,l’; /IZ/ —>2 12/72/;

Jr+ dry =" 2+ Ay
Jor + dary =" Jarar + Ay

with initial condition xo such that: xo(4;) =35, xo(/) =
17 xo(il/’l/) = 0, XQ(/12/72/) = 1, XO(/IQ/) = 5, XQ(;uaz) =0.
Then, applying the Sum operator circuit, we add the fol-
lowing reactions

1 . 1 19 .
lol - )vuuh /Loz — Aout;

Sum(Cy, Ao, C2y 2oy, 2our) has unique output species Aoy,
whose limit distribution, 7;_,, is equal to ; + 7, described
in Example 4.

In what follows, we present in extended form the
operator for convex combination, and introduce a new
operator, which implements the convex distribution with
external inputs (ConE(-)).

Considering C| and C,, as previously, then we need to
derive a CRS operator Con(Ci, Ay,,C2, Aoy, Py Aoue) such

that ; = (1 )y (7). That is, at steady stade, o
oy

oy

equals n)c‘ with probability p and nfz with probability

oy o
1 — p. This can be done by using Theorem 4 to generate a
bi-dimensional synthetic coin with output species 4, , 4,
such that their joint limit distribution is
p ifyj=1andy, =0
I=p
0 otherwise

Ty iy (V15 ¥2) = ifyy=0andy, =1.

That is, 4, and 4,, are mutually exclusive at steady state.
Using these species as catalysts in 13 : 4, + 4, — 4, +
Aowr and T4t Ao, + A, = Ap, + Aowe We have exactly the
desired result at steady state.

Example 9 Consider the following NRO-CRSs C; =
({201}, {40, }, {} x0,) and G = ({40, }, {40, }, {}, %0,), With

initial condition xo, (4,,) = 10 and xo,(4,,) = 20. Then, the

operator Con(Cy, Ay, C2, A0y, 0.3, Aoy;) implements the

operation 7;,, = (15" ),5(n$) and it is given by the fol-
0703\,

lowing reactions:

XO(}vrl) = )C()(/lrz) = XO(/lout) =0.

Let Cy,C; be as above and f =po+p1-c1+ -+ pn-
cn With pr,...;pp € Qo V = {c1,...,cq} a set of envi-
ronmental variables, and E, an environment such that
V Cdom(E). Then, computing a CRS operator

ConE(Cy, 2., Cay20yy f(E(V)), Aow) such that m; =
(nfﬂ‘] rEW)) (nf’z) is a matter of extending the previous
circuit. First of all, we can derive the CRS to compute
AEWV)) and 1—f(E(V)) and memorize them in some
species. This can be done as f{E(V)) is semi-linear (Chen
et al. 2014). Then, as f(E(V)) <1 by assumption, we can
use these species as catalysts to determine the output value
of A,us, as in the previous case. As shown in Sect. 5.2, this
circuit, in the case of external inputs, introduces an arbi-
trarily small, but non-zero, error, due to the fact that there
is no way to know when the computation of AE(V))
terminates.

Example 10 Consider the following NRO-CRSs C; =
({Z01}: {40}, {},%0,) and C3 = ({40, }, {40, }, {}, x0,), with
initial condition xo, (4, ) = 10 and xo,(4,,) = 20. Then,
consider the following functions f(E(c)) = E(c), where
E is a partial function assigning values to ¢, and it is
assumed 0.001 <E(c) <1 and that E(c) - 1000 € N. Then,
the operator ConE(Cy, Ay, , C2, 4oysf, Aour), implements the
operation w,,, = (nf‘] )E@(nf;) and it is given by the
following reactions:

T1 Ae —h /ICall + ;LCatz; T2 ATor + ;LCatg —h 0

T3t A+ Acay, =% Aa5 T4t A+ Az — o

. k . . | ky
T5: )ml + /11 -7 )vl + )“oula T * )“02 + A =" )v2 + )%1141‘

where Ac, Acat,, Acay; Az, 41 and Ay are auxiliary species
with initial condition xo such that xo(Aca,) = Xo(Aca,) =
X()(}vl) = X()()vz) = ny()()tTot) = 1000,)(0()LZ) = I,XO(;LC) =
E(c) - 1000 and k; > k,. Reactions 71,7, implement
fE(c)) and 1 — f(E(c)) and store these values in A¢c,, and
1ot These are used in reactions 73 and 74 to determine the
probability that the steady state value of 4,,, is going to be
determined by reaction ts5 or tg.

5.2 Correctness of the CRS-operators

We prove the correctness of Theorem 7. For the sake of
simplicity, we consider only the Sum operator, as other
operators have similar proofs. The key idea of the proof is
to make use of Eq. (1) to show that the resulting CRS
implements the desired operation at steady state.
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Proposition 2 Let C, = (Ay,4,,,R1,%0,), C2 = (A3,
Ag, s RayX0,) be NRO-CRSs such that Ay N Ay =0 and
{our} N (A1 U A2) = 0. Then for 2,, € Am and 2., € Ay,
the CRS Sum(Cl,)le,Cz,i()z,iou,) =C.
b = C‘ + 7

Aout /Lo

is such that

2

Proof Consider the counting processes Jf” and Jff,
0] 0y

acording to the stocahstic model introduced in (1), which

give the number of molecules of 4,, and A,, produced until
time ¢ in C,. Using Eq. (1) we have

So= Y e ( /0 (X6 () ds)

TERIUR U{1y, 1Ty, }
A t
0

C.
L= >
rERluRzu{rS] ,er}
. .
where p;”' and p;” represent the number of molecules of
4o, and J,, produced by the occurrence of reaction 7.
Recall that 7, and 7, are such that t,, : 4,, — A,y and
P Ay, = Ao and A; N Ay =

Joy Jeoy

/L .
Pr,, =Dz, =Dz, = = 0 and we can write

= S [axce)s)

reR,uRzu{gl ,132}

=S P (/ o (XC (s ))ds)

0] 0y

ay
(0. As a consequence, pz,' =

TER,
and
C.
Jzaz (1)
1 t
- > ([ aecoa)
TERURU{1y, 175, } 0
1
Jo
=S [ ds>
TER, 0
Moreover, — r; =p; =r, =p; =0 for  any

A€ A =4 oury Aoy 4o, }» that is, T, and t;, do not produce
or consume any species in A — { Aour, Ao, 5 40, }- AS @ con-
sequence, because xo(4) = xo, (4) for all 1 € Ay — {4},
we have [0 (X% (s)) ds = [jo (X (5)) ds for all T € Ry .
In exactly the same way, it is possible to show that the
same relation holds for 4,, with respect to X2, and as a
consequence it is also true that féO(T(XC" (5))ds =

Jor(XC(s)) ds for all © € R. As a result:
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TEER:IPT'Y</OCTXC ) ;pr T(/ XCI())ds>
S [acona) = S [ e o)

Considering that 4,, is an output species in C; and 4,, is an
output species in C», that is, NRO-CRSs, then for any 7 €

Jo o o o
Ry we have that v;"" = p;"' and for any 7 € R, v;? = p;*

As a consequence:

0+ S rn( [ nix) o)

TER,

:xfol (0) +J5 (1)

X (1) =X (0) + > pi Y (/ (X% (s ))d)

TER,

_XC;Z (0) +J5= (1)

X () =X

1 "]

~—

According to the fact that in the composed NRO-CRS 4,
is produced only by 7, and 7,, such that p Fou — p‘wr =1,

and that 4,,, is not consumed in any reaction, and its initial
molecular count is 0. Then, it is possible to write:

X5 (1) =047, ( /0 tocr(, (X% (s))ds> + 1., < /0 t% (XC"(s)>ds)

In the same way we can define the stochastic model for the
number of molecules of 4,, or 4,, present in C, at a given
time, as given by the number of molecules produced minus
the number of molecules consumed. As 4, and 4,, are
consumed only by 1, and t,,, and they are not reactant in
any other reaction, we have:

Xir 4, (1) =X (0) + X5 (0)

+3 Py (/ o (X (s ))ds)

TER

+3 pY. (/ o (X (s ))ds)

TER,

v ([ o)
v ([ (xcf<s>>ds)

=X (1) + X (1) — X (1)

:xf; (0) and XC (O):X?‘ (0) by

2oy

/ Lout

because X)C1 (0)
assumption.
The set of reachable states from xo in X% is finite
because the set of reachable states from xo, in X! and from
0, in X< are finite by assumption and 7., in a finite time,
can fire only a finite number of times. This implies that
XC(t) for t — oo will reach a bottom strongly connected
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component (BSCC) of the underlying graph of the state
space, with probability 1 in finite time, because of a well
known result of CTMC theory (Kwiatkowska et al. 2007).
In a BSCC, any pair of configurations x; and x, are such
that x; —* x, and x, —* x;. Therefore, any configuration
x in any BSCC reachable by X% from x, is such that
x(4o,) = x0(40,) = 0, because in a configuration x; where
Xi(2o,) > 0 or x;(4,,) > 0 it is always possible to reach a
configuration x; where x;j(4,,) = xi(4o,) — 1 or x;(4,,) =
Xi(Z0,) — 1 and xj(Aour) = Xi(Zour) + 1, but then there is no
way to reach x; from x; because A, is not reactant in any
reaction in R; U R, U {1y, 75, }. Therefore

lim Prob(X§: ,; (1) = 0[X(0) = x0) = 1=

lim Prob(X$' (1) + X (1) — X$ (1) = 0|
Jm ”

X (0) = x0, X' (0) = xo,,

X (0) = xp,) = 1=

lim Prob(X: (1) = X5 (1) + X32 (1)]
—00 wout 1

Joy

XC"(O) = X(),XCI (0) = X0,
XC(0) = xg,) = 1

This concludes the proof. O
5.3 Compiling into the class of NRO-CRSs

Given a formula P as defined in Definition 8, then [P],
associates to P and an environment £ a pmf. We now
define a translation of P, T(P), into the class of NRO-CRSs
that guarantees that the unique output species of 7(P), at
steady state, approximates [P], with arbitrarily small error
for any environment E such that V(P) C dom(E). In order
to define such a translation we need the following renaming
operator.

Definition 13 Given a CRS C = (4, R, x), for 4, € A and
1 € A we define the renaming operator C{4; «— 4} = C,
such  that C.= ((4—{4}) U{ A}, R{A — 4}, xp),
where R{4; <« /,} substitutes any occurrence of 1, with an
occurrence of 4; for any 7 € R and x((1) = {xo(4) if 1 #
)\.l; X()(;ul) if 2= /11}

This operator produces a new CRS where any occur-
rence of a species is substituted with an occurrence of
another species previously not present.

Definition 14 (Translation into NRO-CRSs) Define the
mapping T by induction on syntax of formulae P:

T(one) =({ou}, {2our },0,x0)  withxo(Aow) = 1;
T(zero) =({ Aour}s { Zout }» 0, x0) Withxo(Aow) = 0;
T(Py + Py) =Sum(T(P1){ 0, < Zour}»
Jors T(P2){ 0y — Jout}s 2o Peout);
T(k-P) :Div(Mul(T(P){/lo — /lom},
Loy kiy 2out){ o — Pour});s Aoty K2y Aowr);
T(min(Py, P2) =Min(T(P1){ 0, < Zou}»
)~017T(P2){/102 — ;Lntlr}v/1027/'{our)§
Con(T(P1){20, < Aour}s 2iors T(P2){ 20y  Zour}s
o3y Dy Zout), ifD=p
ConE(T(P1){ 0, <= 2out}, %oy T(P2){ 20y < Aout}
03y Dy Jout), ifD=p+ 3" pi-ci

T((P1)p : P2) =

form>1,ke€ Q.y, k1,k» € N such thatk:%and for-

mulae Pj,P,, which are assumed to not contain species
Aoy Poy-

Example 11 Consider the formula Py = (one)) ;.02
(4-one) + (2 - one), ,(3 -one) of Example 7, and an
environment E such that 0.000125 < E(c) <1 and suppose
E(c)-800 € N. We show how the translation defined in
Definition 14 produces a NRO-CRS C with output species
Jour such that w;,, = [P;]g. Consider the following NRO-
CRSs Cy, Cy,C3,Cy defined as Cy = ({A¢, 1+ {2, }, {},%5)
with xo(4e,) =1, Co= {0}, {4}, {}, x0) with
500) = 1, Cs = ({e} {es b 1, %0) with xo(i;) = 1,
and Cs = ({4, }, {4e, }, {3, Xx0) with xo(4.,) = 1. Then, we
have that :

C{ =ConE(Cy, Ae,, Mul(Ca, Ay, 4, Aout){ 0y — 2out }s
Jr» 0.001 - ¢ + 0.2, Zour,)

CS5 =Con(Mul(C3, Jey, 2, 2out) {2y < 2out ¥+ %05
Mul(Ca, 2e,, 3, Do) 2oy = Jout }s 203 04, Doty

(0.001-[[c]lz+0.2), ify=1
are such that m;,, =q 1-(0.001-[[c[;+0.2), ify=4 |,
0, otherwise
04, ify=2
and m; =4 0.6, ify=3 . Then, consider the CRS

outy

0, otherwise
C=Sum(Ci{ s, }r21s Co sty }s P12y %ou) and we
have m;,, =[[Pi]]; with arbitrarily small error. The reac-
tions of C are shown below
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Muloninputs{t; : Ac, — 44p,; T2 : ey = 220y;

T3 . )LCA‘ — 3/103‘

T4 Aemy —k beat, T ;bcatz;
T5 ¢ Aear, + A, — A1
Ci T6 - )vcatz + Aot —k (b;
7% ot + A — A2
T3 : A + ;L,,l — /lm + )noun;
Tg: Ay + ;ng — /102 + ;Loutl
T10 ¢ Az —06 Ary
(6 Tt Ay =0,
Ty : irl + )»03; — )vrl + )voutz;
T13 - /1r2 + )LOA — )vrz + /loutz
Sum{t14 : dour, = Jour;  T15 : Aour, = Aour

for k>1 and initial condition such that
X0(Zenv) = E(c) - 800, xo(Asr) = 800, xo(4;) = x0(4;) =
xo(}“zz) =1= xo()%‘l) :xo()‘cz) :xo(iﬁs) = xO(/lcq) =1,
and all other species initialized with O molecules.

Proposition 3  For any formula P we have that T(P) is a
NRO-CRS.

Proof The proof is by structural induction. The base cases
are T(zero) and T(one), which are NRO-CRSs by defini-
tion. Assuming 7(P;) and T(P,) are NRO-CRNs then
application of operators of sum, Mul, Div, Min, Con and
ConE on these CRSs produces a NRO-CRNs by definition
of the operators. O

Given a formula P and an environment E such that
V(P) C dom(E), the following theorem guarantees the
soundness of T(P) with respect to [P],. In order to prove
the soundness of our translation we consider the measure of
the multiplicative error between two pmfs f; and f, with

values in N™, m >0 as en(fi,fo) =
max,cn» min( ;EZ; ,;TEZ;)

Theorem 8 (Soundness) Given a formula P and 7,4,
unique output species of T(P), then, for an environment E

such that V(P) C dom(E), it holds that ni(:) = [P]p with
arbitrarily small error under multiplicative error measure.

The proof follows by structural induction.

Remark 3 A formula P is finite by definition, so Theo-
rem 8 is valid because the only production rule which can
introduce an error is (P1),, : (P2) in the case D # po, and
we can always find reaction rates to make the total prob-
ability of error arbitrarily small. Note that, by using the
results of Soloveichik et al. (2008), it would also be pos-
sible to show that the total error can be kept arbitrarily
small, even if a formula is composed from an unbounded

@ Springer

number of production rules. This requires small modifica-
tions to the ConE operator following ideas in Soloveichik
et al. (2008).

Observe that compositional translation, as defined in
Definition 14, generally produces more compact CRNs
with respect to the direct translation in Theorem 3, and in
both cases the output is non-reacting, so the resulting CRN
can be used for composition. For a distribution with sup-
port J direct translation yields a CRN with 2IJ] reactions,
whereas, for instance, the support of the sum pmf has the
cardinality of the Cartesian product of the supports of the
input pmfs.

6 Discussion

Our goal was to explore the capacity of CRNs to compute
with distributions. This is an important goal because, when
molecular interactions are in low number, as is common in
various experimental scenarios (Qian and Winfree 2014),
deterministic methods are not accurate, and stochasticity is
essential for cellular circuits. Moreover, there is a large
body of literature in biology where stochasticity has been
shown to be essential and not only a nuisance (Eldar and
Elowitz 2010). Our work is a step forward towards better
understanding of molecular computation. In this paper we
focused on error-free computation for distributions. It
would be interesting to understand and characterize what
would happen when relaxing this constraint. That is, if we
admit a probabilistically (arbitrarily) small error, does the
ability of CRNs to compute on distributions increase?
Another interesting topic to investigate is whether we can
relax the constraint that the output species are produced
monotonically. In fact, this is a constraint that is generally
not present in natural systems where species undergo
production and degradation reactions. More specifically,
we require that a CRN will reach a state where no reactions
can happen. In terms of sampling from the distribution, this
would require sampling an ensemble of cells since sam-
pling a single cell would yield a single state. Also, we
would like to address the problem if it is possible to
implement distributions in CRNs without leaders (species
being present with initial number of molecules equal to 1)
and without knowing the precise initial number of mole-
cules for each species. Our constructions, except for the
uniform distribution, crucially rely on these assumptions,
though may be challenging to obtain in technologies such
as DNA strand displacement (Soloveichik et al. 2010). As
a consequence, DNA implementation would become easier
if these constraints can be removed. However, it is worth
noting that, in a practical scenario, leaders can be thought
of as single genes or localized structures (Qian and Winfree
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2014), and there exist CRN techniques to produce given
concentrations independently of initial conditions (Shinar
and Feinberg 2010).

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creative
commons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.
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